1 |
Errors-in-variables identification using maximum likelihood estimation in the frequency domain Soderstrom T, Soverini U Automatica, 79, 131, 2017 |
2 |
Errors-in-variables system identification using structural equation modeling Kreiberg D, Soderstrom T, Yang-Wallentin F Automatica, 66, 218, 2016 |
3 |
Extended accuracy analysis of a covariance matching approach for identifying errors-in-variables systems Soderstrom T, Kreiberg D, Mossberg M Automatica, 50(10), 2597, 2014 |
4 |
A unified framework for EIV identification methods when the measurement noises are mutually correlated Soderstrom T, Diversi R, Soverini U Automatica, 50(12), 3216, 2014 |
5 |
System identification in a networked environment using second order statistical properties Irshad Y, Mossberg M, Soderstrom T Automatica, 49(2), 652, 2013 |
6 |
Can errors-in-variables systems be identified from closed-loop experiments? Soderstrom T, Wang LP, Pintelon R, Schoukens J Automatica, 49(2), 681, 2013 |
7 |
Comparing some classes of bias-compensating least squares methods Soderstrom T Automatica, 49(3), 840, 2013 |
8 |
On the accuracy of a covariance matching method for continuous-time errors-in-variables identification Soderstrom T, Irshad Y, Mossberg M, Zheng WX Automatica, 49(10), 2982, 2013 |
9 |
Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon Varlamov S, Dore J, Evans R, Ong D, Eggleston B, Kunz O, Schubert U, Young T, Huang J, Soderstrom T, Omaki K, Kim K, Teal A, Jung M, Yun J, Pakhuruddin ZM, Egan R, Green MA Solar Energy Materials and Solar Cells, 119, 246, 2013 |
10 |
A New View of Microcrystalline Silicon: The Role of Plasma Processing in Achieving a Dense and Stable Absorber Material for Photovoltaic Applications Bugnon G, Parascandolo G, Soderstrom T, Cuony P, Despeisse M, Hanni S, Holovsky J, Meillaud F, Ballif C Advanced Functional Materials, 22(17), 3665, 2012 |