1 |
A computational study of a small-scale biomass burner: The influence of chemistry, turbulence and combustion sub-models Farokhi M, Birouk M, Tabet F Energy Conversion and Management, 143, 203, 2017 |
2 |
A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging Buchmayr M, Gruber J, Hargassner M, Hochenauer C Energy Conversion and Management, 115, 32, 2016 |
3 |
Prediction of the heating characteristic of billets in a walking hearth type reheating furnace using CFD Prieler R, Mayr B, Demuth M, Holleis B, Hochenauer C International Journal of Heat and Mass Transfer, 92, 675, 2016 |
4 |
The usability and limits of the steady flamelet approach in oxy-fuel combustions Mayr B, Prieler R, Demuth M, Hochenauer C Energy, 90, 1478, 2015 |
5 |
Application of the steady flamelet model on a lab-scale and an industrial furnace for different oxygen concentrations Prieler R, Mayr B, Demuth M, Spoljaric D, Hochenauer C Energy, 91, 451, 2015 |
6 |
Numerical investigation of the steady flamelet approach under different combustion environments Prieler R, Demuth M, Spoljaric D, Hochenauer C Fuel, 140, 731, 2015 |
7 |
CFD and experimental analysis of a 115 kW natural gas fired lab-scale furnace under oxy-fuel and air-fuel conditions Mayr B, Prieler R, Demuth M, Potesser M, Hochenauer C Fuel, 159, 864, 2015 |
8 |
A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames Kashir B, Tabejamaat S, Jalalatian N International Journal of Hydrogen Energy, 40(18), 6243, 2015 |
9 |
Evaluation of a steady flamelet approach for use in oxy-fuel combustion Prieler R, Demuth M, Spoljaric D, Hochenauer C Fuel, 118, 55, 2014 |
10 |
Eulerian particle flamelet modeling of a bluff-body CH4/H-2 flame Odedra A, Malalasekera W Combustion and Flame, 151(3), 512, 2007 |