1 |
Investigation of a trifold interaction mechanism of shock, vortex, and dust using a DG method in a two-fluid model framework Ejtehadi O, Rahimi A, Myong RS Powder Technology, 374, 121, 2020 |
2 |
Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils Xu WH, Xu GD, Duan WY, Song ZJ, Lei J Energy, 174, 375, 2019 |
3 |
Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction Yuan C, Song JC, Zhu LS, Liu MH International Journal of Heat and Mass Transfer, 141, 1009, 2019 |
4 |
A numerical approach for particle-vortex interactions based on volume-averaged equations Fukada T, Fornari W, Brandt L, Takeuchi S, Kajishima T International Journal of Multiphase Flow, 104, 188, 2018 |
5 |
Characterizing spray flame-vortex interaction: A spray spectral diagram for extinction Franzelli B, Vie A, Ihme M Combustion and Flame, 163, 100, 2016 |
6 |
Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine Wang Y, Sun XJ, Zhu B, Zhang HJ, Huang DG Renewable Energy, 86, 316, 2016 |
7 |
Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions Wuzhang JC, Song YX, Sun RZ, Pan XX, Li DQ Electrophoresis, 36(19), 2489, 2015 |
8 |
MODEL EQUATION FOR THE DYNAMICS OF WRINKLED SHOCK WAVES: COMPARISON WITH DNS AND EXPERIMENTS Denet B, Biamino L, Lodato G, Vervisch L, Clavin P Combustion Science and Technology, 187(1-2), 296, 2014 |
9 |
Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation Hong S, Speth RL, Shanbhogue SJ, Ghoniem AF Combustion and Flame, 160(8), 1381, 2013 |
10 |
Effects of non-equidiffusion on unsteady propagation of hydrogen-enriched methane/air premixed flames Di Sarli V, Di Benedetto A International Journal of Hydrogen Energy, 38(18), 7510, 2013 |