1 |
Process for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO2 mitigation La A, Perre P, Taidi B Applied Microbiology and Biotechnology, 103(2), 731, 2019 |
2 |
Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy Gao MC, Wang S, Ren Y, Jin CJ, She ZL, Zhao YG, Yang SY, Guo L, Zhang J, Li ZW Chemical Engineering Journal, 284, 1008, 2016 |
3 |
Microalgal symbiosis in biotechnology Santos CA, Reis A Applied Microbiology and Biotechnology, 98(13), 5839, 2014 |
4 |
Axenic Cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in Autotrophic Conditions: a New Protocol for Kinetic Studies Farges B, Poughon L, Roriz D, Creuly C, Dussap CG, Lasseur C Applied Biochemistry and Biotechnology, 167(5), 1076, 2012 |
5 |
Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii Tevatia R, Demirel Y, Blum P Bioresource Technology, 119, 419, 2012 |
6 |
Kinetic Modeling of Light Limitation and Sulfur Deprivation Effects in the Induction of Hydrogen Production With Chlamydomonas reinhardtii. Part II: Definition of Model-Based Protocols and Experimental Validation Degrenne B, Pruvost J, Titica M, Takache H, Legrand J Biotechnology and Bioengineering, 108(10), 2288, 2011 |
7 |
Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter Jin YM, Veiga MC, Kennes C Biotechnology and Bioengineering, 92(4), 462, 2005 |
8 |
Microbial Linear Plasmids Meinhardt F, Schaffrath R, Larsen M Applied Microbiology and Biotechnology, 47(4), 329, 1997 |