1 |
Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography Saleh D, Hess R, Ahlers-Hesse M, Beckert N, Schonberger M, Rischawy F, Wang G, Bauer J, Blech M, Kluters S, Studts J, Hubbuch J Biotechnology and Bioengineering, 118(8), 2923, 2021 |
2 |
Accurate predictions of H2O and CO2 co-electrolysis outlet compositions in operation Aicart J, Petitjean M, Laurencin J, Tallobre L, Dessemond L International Journal of Hydrogen Energy, 40(8), 3134, 2015 |
3 |
Simulated moving bed chromatography designs for lanthanide and actinide separations using Reillex HPQ (TM) resin Sreedhar B, Hobbs DT, Kawajiri Y Separation and Purification Technology, 136, 50, 2014 |
4 |
Zonal rate model for axial and radial flow membrane chromatography. Part I: Knowledge transfer across operating conditions and scales Ghosh P, Vahedipour K, Lin M, Vogel JH, Haynes CA, von Lieres E Biotechnology and Bioengineering, 110(4), 1129, 2013 |
5 |
Zonal rate model for stacked membrane chromatography part II: Characterizing ion-exchange membrane chromatography under protein retention conditions Francis P, von Lieres E, Haynes C Biotechnology and Bioengineering, 109(3), 615, 2012 |
6 |
Optimal Integration of Directly Combined Hydrophobic Interaction and Ion Exchange Chromatography Purification Processes Helling C, Borrmann C, Strube J Chemical Engineering & Technology, 35(10), 1786, 2012 |
7 |
A systematic approach for modeling chromatographic processes -Application to protein purification Chan S, Titchener-Hooker N, Bracewell DG, Sorensen E AIChE Journal, 54(4), 965, 2008 |
8 |
The influence of grafted polymer architecture and fluid hydrodynamics on protein separation by entropic interaction chromatography Coad BR, Steels BM, Kizhakkedathu JN, Brooks DE, Haynes CA Biotechnology and Bioengineering, 97(3), 574, 2007 |
9 |
Modeling the chromatographic response of inverse size-exclusion chromatography Saritha NV, Madras G Chemical Engineering Science, 56(23), 6511, 2001 |