521 - 521 |
True colours [Anonymous] |
522 - 522 |
Atomic motion in ferromagnetic break junctions Shi SF, Ralph DC |
522 - 523 |
Atomic motion in ferromagnetic break junctions - Response Sokolov A, Zhang C, Tsymbal EY, Redepenning J, Doudin B |
525 - 526 |
Does REACH go too far? Bowman DM, Van Calster G |
527 - 528 |
Details are important Helmus MN |
533 - 534 |
Nanostructures - Available in print Liddle JA |
534 - 535 |
Synthesis - Regime change for nanowire growth Johansson J |
535 - 536 |
Iron oxide nanoparticles - Hidden talent Perez JM |
537 - 538 |
Nanogratings - Breaking up is a grating experience Freund B |
538 - 539 |
Superconducting devices - Cooling electrons one by one De Franceschi S, Mingo N |
541 - 544 |
Synergetic nanowire growth Borgstrom MT, Immink G, Ketelaars B, Algra R, Bakkers EPAM |
545 - 548 |
Self-formation of sub-60-nm half-pitch gratings with large areas through fracturing Pease LF, Deshpande P, Wang Y, Russel WB, Chou SY |
549 - 554 |
Multiscale patterning of plasmonic metamaterials Henzie J, Lee MH, Odom TW |
555 - 559 |
Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures Zhang Q, Atay T, Tischler JR, Bradley MS, Bulovic V, Nurmikko AV |
560 - 564 |
Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing Satishkumar BC, Brown LO, Gao Y, Wang CC, Wang HL, Doorn SK |
565 - 569 |
Hinged nanorods made using a chemical approach to flexible nanostructures Mirkovic T, Foo ML, Arsenault AC, Fournier-Bidoz S, Zacharia NS, Ozin GA |
570 - 576 |
Nanoparticle printing with single-particle resolution Kraus T, Malaquin L, Schmid H, Riess W, Spencer ND, Wolf H |
577 - 583 |
Intrinsic peroxidase-like activity of ferromagnetic nanoparticles Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X |