671 - 673 |
Industrial energy-analysis and management: A European perspective Grubbstrom RW, Hammond GP, Probert SD, Reis AJPS |
675 - 700 |
Industrial energy analysis, thermodynamics and sustainability Hammond GP |
701 - 718 |
An attempt to introduce dynamics into generalised exergy considerations Grubbstrom RW |
719 - 728 |
The efficiency of the rational use of energy Schaumann G |
729 - 748 |
Optimal design of CHCP plants in the civil sector by thermoeconomics Cardona E, Piacentino A |
749 - 762 |
Fuzzy thermoeconomic optimization of energy-transforming systems Mazur V |
763 - 770 |
Consumption dynamics of primary-energy sources: The century of alternative energies Matias JCD, Devezas TC |
771 - 780 |
Decomposition of manufacturing energy-use in IEA countries - How do recent developments compare with historical long-term trends? Unander F |
781 - 794 |
Industrial energy-flow management Lampret M, Bukovec V, Paternost A, Krizman S, Lojk V, Golobic I |
795 - 805 |
The externally-fired gas-turbine (EFGT-Cycle) for decentralized use of biomass Kautz M, Hansen U |
806 - 816 |
Local learning-networks on energy efficiency in industry - Successful initiative in Germany Jochem E, Gruber E |
817 - 827 |
Life-cycle assessment for energy analysis and management de Haes HAU, Heijungs R |
828 - 841 |
Modelling and allocation of CO2 emissions in a multiproduct industry: The case of oil refining Babusiaux D, Pierru A |
842 - 852 |
CO2 emissions of global metal-industries: The case of copper Kuckshinrichs W, Zapp P, Poganietz WR |
853 - 862 |
Analysis of energy use and carbon losses in the chemical industry Neelis M, Patel M, Bach P, Blok K |