1621 - 1622 |
The 15th International Conference on Molecular Beam Epitaxy (MBE-XV) Preface Wasilewski ZR, Gupta JA, Beresford R |
1625 - 1631 |
Quantum dot lasers: From promise to high-performance devices Bhattacharya P, Mi Z, Yang J, Basu D, Saha D |
1632 - 1639 |
Nitride-based laser diodes by plasma-assisted MBE-From violet to green emission Skierbiszewski C, Wasilewski ZR, Grzegory I, Porowski S |
1640 - 1645 |
Theoretical and experimental molecular beam angular distribution studies for gas injection in ultra-high vacuum Isnard L, Ares R |
1646 - 1649 |
Unintentional aluminum incorporation related to the introduction of nitrogen gas during the plasma-assisted molecular beam epitaxy Ishikawa F, Wu SD, Kato M, Uchiyama M, Higashi K, Kondow M |
1650 - 1654 |
Study of the oxygen incorporation in Al0.2Ga0.3In0.5P:Be layers grown by MBE employing a P-cracker cell Soubervielle-Montalvo C, Mishournyi V, de Anda F, Gorbatchev A, Hernandez IC, Gallardo S, Kudriatsev Y, Lopez-Lopez M, Mendez-Garcia VH |
1655 - 1657 |
Gallium beam analysis and implications for the growth of ultra-high-mobility GaAs/AlGaAs heterostructures Schmult S, Taylor S, Dietsche W |
1658 - 1661 |
MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 X 10(6) cm(2)/V s Umansky V, Heiblum M, Levinson Y, Smet J, Nubler J, Dolev M |
1662 - 1665 |
Bandedge absorption of GaAsN films measured by the photothermal deflection spectroscopy Beaudoin M, Chan ICW, Beaton D, Elouneg-Jamroz M, Tiedje T, Whitwick M, Young EC, Young JF, Zangenberg N |
1666 - 1670 |
Study of AlGaAs/GaAs quantum wells grown by molecular beam epitaxy on GaAs substrates subjected to different treatments Contreras-Guerrero R, Guillen-Cervantes A, Rivera-Alvarez Z, Pulzara-Mora A, Gallardo-Hernandez S, Kudriatsev Y, Sanchez-Resendiz VM, Rojas-Ramirez JS, Cruz-Hernandez E, Mendez-Garcia VH, Zamora-Peredo L, Lopez-Lopez M |
1671 - 1675 |
Molecular beam epitaxy in a high-volume GaAs fab Rogers TJ |
1676 - 1679 |
Design elements affecting wafer temperature uniformity in multi-wafer production MBE systems Rogers TJ, Shelton WA, Conroy C |
1680 - 1683 |
Strained quantum wells in scrolled structures studied by mu-photoluminescence Hey R, Ramsteiner M, Santos PV, Friedland KJ |
1684 - 1687 |
A study of the doping influence on strain relaxation of graded composition InGaAs layers grown by molecular beam epitaxy Tangring I, Song YX, Lai ZH, Wang SM, Sadeghi M, Larsson A |
1688 - 1691 |
Critical thickness of MBE-grown Ga1-xInxSb (x < 0.2) on GaSb Nilsen TA, Breivik M, Selvig E, Fimland BO |
1692 - 1695 |
High-temperature growth of heteroepitaxial InSb films on Si(111) substrate via the InSb bi-layer Mori M, Saito M, Nagashima K, Ueda K, Yoshida T, Maezawa K |
1696 - 1699 |
Transport properties of InSb and InAs0.1Sb0.9 thin films sandwiched between Al0.1In0.9Sb layers grown by molecular beam epitaxy Shibasaki I, Geka H, Okamoto A |
1700 - 1702 |
Molecular beam epitaxy of AlAsSb/AlAs/InGaAs coupled double quantum wells with extremely thin AlAs center barrier Gozu S, Mozume T, Ishikawa H |
1703 - 1706 |
Growth of InAs/GaSb type-II superlattices by gas-source molecular-beam epitaxy Li J, Gong Q, Li SG, Li AZ, Lin C |
1707 - 1710 |
High-resolution X-ray diffraction analysis of InGaAs/AlAsSb coupled double quantum wells grown by molecular beam epitaxy Mozume T, Gozu S |
1711 - 1714 |
Hall effect and magnetoresistance analysis by electron-hole coexisting model in AlInSb/InAsSb quantum wells Manago T, Nisizako N, Ishida S, Geka H, Shibasaki I |
1715 - 1718 |
Influence of arsenic flux on the annealing properties of GaInNAs quantum wells for long wavelength laser applications around 1.6 mu m Bisping D, Pucicki D, Fischer M, Hofling S, Forchel A |
1719 - 1722 |
GaInAsN growth studies for InP-based long-wavelength laser applications (TUA3-3) Grundl T, Bohm G, Meyer R, Amann MC |
1723 - 1727 |
Growth and characterization of GaInNAs by molecular beam epitaxy using a nitrogen irradiation method Zhao H, Wang SM, Zhao QX, Sadeghi M, Larsson A |
1728 - 1732 |
The role of Sb and N ions on the morphology and localization of (Ga,In) (N,As) quantum wells Guzman A, Luna E, Ishikawa F, Trampert A |
1733 - 1738 |
MBE growth and characterization of TlInGaAsN double quantum well structures Krishnamurthy D, Shanthi S, Kim KM, Sakai Y, Ishimaru M, Hasegawa S, Asahi H |
1739 - 1744 |
Interface properties of (Ga,In)(N,As) and (Ga,In)(As,Sb) materials systems grown by molecular beam epitaxy Luna E, Ishikawa F, Satpati B, Rodriguez JB, Tournie E, Trampert A |
1745 - 1747 |
Optical characterization of InGaAsN layers grown on InP substrates Yoshikawa M, Miura K, Iguchi Y, Kawamura Y |
1748 - 1753 |
MBE growth of GaAsN/GaP(N) quantum wells with abrupt heterointerfaces for photonics applications on Si substrates Umeno K, Furukawa Y, Wakahara A, Noma R, Okada H, Yonezu H, Takagi Y, Kan H |
1754 - 1757 |
Molecular beam epitaxy growth of bulk GaNAsSb on Ge/graded-SiGe/Si substrate Ng TK, Yoon SF, Tan KH, Chen KP, Tanoto H, Lew KL, Wicaksono S, Loke WK, Dohrman C, Fitzgerald EA |
1758 - 1760 |
Real time extraction of quantum dot size from RHEED intensity profiles Rajapaksha C, Freundlich A |
1761 - 1763 |
In situ X-ray diffraction during stacking of InAs/GaAs(001) quantum dot layers and photoluminescence spectroscopy Takahasi M, Kaizu T |
1764 - 1766 |
Surface compositional mapping of self-assembled InAs/GaAs quantum rings Biasiol G, Magri R, Heun S, Locatelli A, Mentes TO, Sorba L |
1767 - 1769 |
Differential absorption spectroscopy on coupled InGaAs quantum dots Chuang KY, Chen CY, Tzeng TE, Feng DJY, Lay TS |
1770 - 1773 |
Growth of InGaAs/GaNAs strain-compensated quantum dot superlattice on GaAs (311)B by molecular beam epitaxy Oshima R, Shoji Y, Takata A, Okada Y |
1774 - 1777 |
Optical studies on InAs/InGaAs/GaNAs strain-compensated quantum dots grown on GaAs (001) by molecular beam epitaxy Takata A, Oshima R, Shoji Y, Okada Y |
1778 - 1782 |
Effect of crystallographic orientation of microchannel on low-angle incidence microchannel epitaxy on (001) GaAs substrate Naritsuka S, Matsuoka S, Ishida Y, Maruyama T |
1783 - 1786 |
Control of dot geometry and photoluminescence linewidth of InGaAs/GaAs quantum dots by growth conditions Gushterov A, Lingys L, Reithmaier JP |
1787 - 1790 |
Blue-shift emission in InP-based quantum dots by SiO2 sputtering and rapid thermal annealing Hsu TC, Tzeng TE, Lin EY, Chuang KY, Chiu CL, Lay TS |
1791 - 1794 |
The effects of rapid thermal annealing on doubled quantum dots grown by molecular beam epitaxy Suraprapapich S, Shen YM, Fainman Y, Horikoshi Y, Panyakeow S, Tu CW |
1795 - 1798 |
The Kondo effect observed up to T-K similar to 80K in self-assembled InAs quantum dots laterally coupled to nanogap electrodes Shibata K, Hirakawa K |
1799 - 1802 |
Improving size distribution of InAs quantum dots for intersubband devices Andrews AM, Klang P, Krzyzanowski R, Schrambock M, Detz H, Schrenk W, Strasser G |
1803 - 1806 |
Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: A new approach in controlling the bandwidth Haffouz S, Raymond S, Lu ZG, Barrios PJ, Roy-Guay D, Wu X, Liu JR, Poitras D, Wasilewski ZR |
1807 - 1810 |
Fast carrier relaxation of self-assembled InAs quantum dots embedded in strain-relaxed In0.35Ga0.65As barriers for ultrafast nonlinear optical switching applications Kitada T, Mukai T, Takahashi T, Morita K, Isu T |
1811 - 1814 |
MBE growth of In(Ga)As quantum dots for entangled light emission Nicoll CA, Salter CL, Stevenson RM, Hudson AJ, Atkinson P, Cooper K, Shields AJ, Ritchie DA |
1815 - 1818 |
Gallium-assisted deoxidation of patterned substrates for site-controlled growth of InAs quantum dots Atkinson P, Schmidt OG |
1819 - 1821 |
Site-controlled InAs quantum dot formation grown on the templates fabricated by the Nano-Jet Probe method Ohkouchi S, Ozaki N, Sugimoto Y, Ishikawa H, Asakawa K |
1822 - 1824 |
Formation of linear InAs/InGaAsP/InP (100) quantum dot arrays by self-organized anisotropic strain engineering in chemical beam epitaxy Sritirawisarn N, van Otten FWM, Eijkemans TJ, Notzel R |
1825 - 1827 |
Droplet epitaxy of GaAs quantum dots on (001), vicinal (001), (110), and (311)A GaAs Heyn C, Stemmann A, Schramm A, Hansen W |
1828 - 1831 |
High-density GaAs/AlGaAs quantum dots formed on GaAs (311)A substrates by droplet epitaxy Mano T, Kuroda T, Mitsuishi K, Noda T, Sakoda K |
1832 - 1835 |
Formation of In0.5Ga0.5As ring-and-hole structure by droplet molecular beam epitaxy Pankaow N, Panyakeow S, Ratanathammaphan S |
1836 - 1838 |
Spontaneous formation of a cluster of InAs dots along a ring-like zone on GaAs (100) by droplet epitaxy Noda T, Mano T, Kuroda T, Sakoda K, Sakaki H |
1839 - 1842 |
Nanohole formation on AlGaAs surfaces by local droplet etching with gallium Heyn C, Stemmann A, Hansen W |
1843 - 1846 |
Fabrication of In0.15Ga0.85As nanohloes on GaAs by droplet molecular beam epitaxy Boonpeng P, Panyakeow S, Ratanathammaphan S |
1847 - 1850 |
Growth and structural characterization of GaAs/GaAsSb axial heterostructured nanowires Dheeraj DL, Patriarche G, Zhou H, Harmand JC, Weman H, Fimland BO |
1851 - 1854 |
InGaAs quantum wires grown on (100)InP substrates Tzeng TE, Chen CY, Feng DJ, Lay TS |
1855 - 1858 |
Chemical beam epitaxy of highly ordered network of tilted InP nanowires on silicon Radhakrishnan G, Freundlich A, Fuhrmann B |
1859 - 1862 |
Growth of one-dimensional III-V structures on Si nanowires and pre-treated planar Si surfaces Detz H, Klang P, Andrews AM, Lugstein A, Steinmair M, Hyun YJ, Bertagnolli E, Schrenk W, Strasser G |
1863 - 1867 |
Growth of GaInNAs and 1.3 mu m edge emitting lasers by molecular beam epitaxy Wang SM, Adolfsson G, Zhao H, Wei YQ, Gustavsson J, Zhao QX, Sadeghi M, Larsson A |
1868 - 1871 |
MBE grown GaInNAs-based multi-Watt disk lasers Korpijarvi VM, Guina M, Puustinen J, Tuomisto P, Rautiainen J, Harkonen A, Tukiainen A, Okhotnikov O, Pessa M |
1872 - 1875 |
GaAs1-xBix light emitting diodes Lewis RB, Beaton DA, Lu XF, Tiedje T |
1876 - 1880 |
Improved performance of GaInNAs solar cells grown by molecular-beam epitaxy using increased growth rate instead of surfactants Ptak AJ, France R, Jiang CS, Romero MJ |
1881 - 1884 |
Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures Zhang YG, Gu Y, Tian ZB, Wang K, Li AZ, Zhu XR, Zheng YL |
1885 - 1888 |
Photovoltaic characteristics of InAs/InGaAs/GaAs QD heterostructures Ngo CY, Yoon SF, Loke WK, Ng TK, Chua SJ |
1889 - 1892 |
Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements Kuze N, Morishita T, Camargo EG, Ueno K, Yokoyama A, Sato M, Endo H, Yanagita Y, Tokuo S, Goto H |
1893 - 1896 |
High detectivity AlGaAsSb/InGaAsSb photodetectors grown by molecular beam epitaxy with cutoff wavelength up to 2.6 mu m Shao H, Torfi A, Li W, Moscicka D, Wang WI |
1897 - 1900 |
Optimizing residual carriers in undoped InAs/GaSb superlattices for high operating temperature mid-infrared detectors Haugan HJ, Elhamri S, Ullrich B, Szmulowicz F, Brown GJ, Mitchel WC |
1901 - 1904 |
Optimization of InAs/GaSb type-II superlattice interfaces for long-wave (similar to 8 mu m) infrared detection Khoshakhlagh A, Plis E, Myers S, Sharma YD, Dawson LR, Krishna S |
1905 - 1907 |
MBE growth of mid-IR diode lasers based on InAs/GaSb/InSb short-period superlattice active zones Gassenq A, Cerutti L, Baranov AN, Tournie E |
1908 - 1911 |
MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs Kashani-Shirazi K, Bachmann A, Boehm G, Ziegler S, Amann MC |
1912 - 1916 |
GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 mu m) grown by MBE Cerutti L, Ducanchez A, Narcy G, Grech P, Boissier G, Garnache A, Tournie E, Genty F |
1917 - 1919 |
High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 mu m Paajaste J, Suomalainen S, Koskinen R, Harkonen A, Guina M, Pessa M |
1920 - 1922 |
Quaternary GaInAsSb/AlGaAsSb vertical-external-cavity surface-emitting lasers-A challenge for MBE growth Manz C, Yang QK, Rattunde M, Schulz N, Rosener B, Kirste L, Wagner J, Kohler K |
1923 - 1928 |
The reproducibility and transferability of a THz quantum cascade laser design between two MBE growth manufacturers' platforms Beere HE, Freeman JR, Marshall OP, Worrall CH, Ritchie DA |
1929 - 1931 |
Precise growth control and characterization of strained AlInAs and GaInAs for quantum cascade lasers by GSMBE Gu Y, Li H, Li AZ, Li YY, Wei L, Zhang YG, Wang K, Zheng YL |
1932 - 1934 |
Al(In)As-(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers Boehm G, Katz S, Meyer R, Amann MC |
1935 - 1938 |
Optimization of AlInGaAs/InGaAs/InAs strain compensated triangular quantum wells grown by gas source molecular beam epitaxy for laser applications in 2.1-2.4 mu m range Gu Y, Zhang YG, Wang K, Li AZ, Li YY |
1939 - 1943 |
Terahertz quantum cascade lasers based on In0.53Ga0.47As/In0.52Al0.48As/InP Fischer M, Scalari G, Walther C, Faist J |
1944 - 1949 |
Research advances on III-V MOSFET electronics beyond Si CMOS Kwo J, Hong M |
1950 - 1953 |
Interface properties of MBE-grown MOS structures with InGaAs/InAlAs buried channel and in-situ high-k oxide Oktyabrsky S, Tokranov V, Koveshnikov S, Yakimov M, Kambhampati R, Bakhru H, Moore R, Tsai W |
1954 - 1957 |
Depletion-mode In0.2Ga0.8As/GaAs MOSFET with molecular beam epitaxy grown Al2O3/Ga2O3(Gd2O3) as gate dielectrics Lin CA, Lin TD, Chiang TH, Chiu HC, Chang P, Hong M, Kwo J |
1958 - 1961 |
Inversion-channel enhancement-mode GaAs MOSFETs with regrown source and drain contacts Liao CC, Cheng D, Cheng CC, Cheng KY, Feng M, Chiang TH, Kwo J, Hong M |
1962 - 1971 |
High-quality III-V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication Choi DH, Harris JS, Kim E, McIntyre PC, Cagnon J, Stemmer S |
1972 - 1975 |
InSb quantum-well structures for electronic device applications Edirisooriya M, Mishima TD, Gaspe CK, Bottoms K, Hauenstein RJ, Santos MB |
1976 - 1978 |
The growth of high electron mobility InAsSb for application to high electron-mobility transistors Liao CC, Cheng KY |
1979 - 1983 |
Monolithic integration of InP-based transistors on Si substrates using MBE Liu WK, Lubyshev D, Fastenau JM, Wu Y, Bulsara MT, Fitzgerald EA, Urteaga M, Ha W, Bergman J, Brar B, Hoke WE, LaRoche JR, Herrick KJ, Kazior TE, Clark D, Smith D, Thompson RF, Drazek C, Daval N |
1984 - 1987 |
Height-selective etching for regrowth of self-aligned contacts using MBE Burek GJ, Wistey MA, Singisetti U, Nelson A, Thibeault J, Bank SR, Rodwell MJW, Gossard AC |
1988 - 1993 |
MBE growth and patterned backgating of electron-hole bilayer structures Farrer I, Croxall AF, Das Gupta K, Nicoll CA, Beere HE, Thangaraj M, Waldie J, Ritchie DA, Pepper M |
1994 - 1996 |
Nitridation of (111)Al substrates for GaN growth by molecular beam epitaxy Sawadaishi M, Taguchi S, Sasaya K, Honda T |
1997 - 2001 |
Growth of free-standing GaN layer on Si(111) substrate Yang TH, Ku JT, Chang JR, Shen SG, Chen YC, Wong YY, Chou WC, Chen CY, Chang CY |
2002 - 2005 |
Strain engineering in GaN layers grown on silicon by molecular beam epitaxy: The critical role of growth temperature Cordier Y, Baron N, Chenot S, Vennegues P, Tottereau O, Leroux M, Semond F, Massies J |
2006 - 2009 |
GaN on Si with nm-thick single-crystal Sc2O3 as a template using molecular beam epitaxy Lee WC, Lee YJ, Kwo J, Hsu CH, Lee CH, Wu SY, Ng HM, Hong M |
2010 - 2015 |
Effect of AlN interlayers in the structure of GaN-on-Si grown by plasma-assisted MBE Adikimenakis A, Sahonta SL, Dimitrakopulos GP, Domagala J, Kehagias T, Komninou P, Iliopoulos E, Georgakilas A |
2016 - 2020 |
The growth and characterization of an InN layer on AlN/Si (111) Kim MD, Park SR, Oh JE, Kim SG, Yang WC, Koo BH |
2021 - 2024 |
Effect of the MgO substrate on the growth of GaN Suzuki R, Kawaharazuka A, Horikoshi Y |
2025 - 2028 |
Growth of GaN with warm ammonia by molecular beam epitaxy Kawaharazuka A, Yoshizaki T, Ploog KH, Horikoshi Y |
2029 - 2032 |
Advances in quality and uniformity of (Al,Ga)N/GaN quantum wells grown by molecular beam epitaxy with plasma source Natali F, Cordier Y, Chaix C, Bouchaib P |
2033 - 2038 |
Gallium adlayer adsorption and desorption studies with real-time analysis by spectroscopic ellipsometry and RHEED on A-, M-, and C-plane GaN grown by PAMBE Misra P, Boney C, Starikov D, Bensaoula A |
2039 - 2041 |
Carbon doping of non-polar cubic GaN by CBr4 As DJ, Tschumak E, Pottgen H, Kasdorf O, Gerlach JW, Karl H, Lischka K |
2042 - 2045 |
Incorporation sites and luminescence characterizations of Er-doped GaN grown by molecular beam epitaxy Chen SQ, Seo J, Sawahata J, Akimoto K |
2046 - 2048 |
Structural properties of AlCrN, GaCrN and InCrN Kimura S, Emura S, Tokuda K, Zhou YK, Hasegawa S, Asahi H |
2049 - 2053 |
Comparison of surface morphologies in GaN films grown by rf-MBE and MOCVD on vicinal sapphire (0001) substrates Shen XQ, Shimizu M, Okumura H, Xu FJ, Shen B, Zhang GY |
2054 - 2057 |
Growth of ScN epitaxial films by plasma-assisted molecular beam epitaxy Hall JL, Moram MA, Sanchez A, Novikov SV, Kent AJ, Foxon CT, Humphreys CJ, Campion RP |
2058 - 2062 |
InN films and nanostructures grown on Si (111) by RF-MBE Ajagunna AO, Adikimenakis A, Iliopoulos E, Tsagaraki K, Androulidaki M, Georgakilas A |
2063 - 2068 |
Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays Kishino K, Sekiguchia H, Kikuchi A |
2069 - 2072 |
Polarization effects in self-organized InGaN/GaN quantum dots grown by RF-plasma-assisted molecular beam epitaxy Zhang M, Moore J, Mi Z, Bhattacharya P |
2073 - 2079 |
Advances in InN epitaxy and its material control by MBE towards novel InN-based QWs Yoshikawa A, Che S, Ishitani Y, Wang XQ |
2080 - 2083 |
AlGaN quantum well structures for deep-UV LEDs grown by plasma-assisted MBE using sub-monolayer digital-alloying technique Jmerik VN, Shubina TV, Mizerov AM, Belyaev KG, Sakharov AV, Zamoryanskaya MV, Sitnikova AA, Davydov VY, Kop'ev PS, Lutsenko EV, Rzheutskii NV, Danilchik AV, Yablonskii GP, Ivanov SV |
2084 - 2086 |
GaN metal-oxide-semiconductor diodes with molecular beam epitaxy-Al2O3 as a template followed by atomic layer deposition growth Chang YH, Chiu HC, Chang WH, Kwo J, Tsai CC, Hong JM, Hong M |
2087 - 2090 |
Selectively grown AlGaN/GaN HEMTs on Si(111) substrates for integration with silicon microelectronics Haffouz S, Semond F, Bardwell JA, Lester T, Tang H |
2091 - 2095 |
Mechanisms of ammonia-MBE growth of GaN on SiC for transport devices Tang H, Rolfe S, Semond F, Bardwell JA, Baribeau JM |
2096 - 2098 |
The de-oxidation of a ZnTe surface by hydrogen treatment Kyoh K, Ichinohe Y, Honma K, Kimura N, Kimura N, Sawada T, Suzuki K, Imai K, Saito H, Korostelin YV |
2099 - 2101 |
A comparison of ZnMgSSe and MgS wide bandgap semiconductors used as barriers: Growth, structure and luminescence properties Moug RT, Bradford C, Izdebski F, Davidson I, Curran A, Warburton RJ, Prior KA, Aouni A, Morales FM, Molina SI |
2102 - 2105 |
Photoluminescence properties of Pb1-xSnxTe/CdTe quantum wells grown on (100)-oriented GaAs substrates by molecular beam epitaxy Koike K, Hotei T, Kawaguchi R, Yano M |
2106 - 2108 |
Optical properties of ZnSe on GaN (0001) grown by MBE Ichinohe Y, Kyoh K, Honma K, Sawada T, Suzuki K, Kimura N, Kimura N, Imai K |
2109 - 2112 |
Wide band gap II-VI selenides for short wavelength intersubband devices Shen A, Charles WO, Li BS, Franz KJ, Gmachl C, Zhang Q, Tamargo MC |
2113 - 2115 |
Growth and properties of wide bandgap MgSe/ZnxCd1-xSe multiple quantum wells for intersubband devices operating at short wavelengths Li BS, Shen A, Charles WO, Zhang Q, Tamargo MC |
2116 - 2119 |
MBE growth of II-VI materials on GaSb substrates for photovoltaic applications Wang S, Ding D, Liu X, Zhang XB, Smith DJ, Furdyna JK, Zhang YH |
2120 - 2122 |
Compact green laser converter with injection pumping, based on MBE grown II-VI nanostructures Ivanov SV, Lutsenko EV, Sorokin SV, Sedova IV, Gronin SV, Voinilovich AG, Tarasuk NP, Yablonskii GP, Kop'ev PS |
2123 - 2127 |
CdSe quantum dots in ZnSe nanowires as efficient source for single photons up to 220 K Aichele T, Tribu A, Sallen G, Bocquel J, Bellet-Amalric E, Bougerol C, Poizat JP, Kheng K, Andre R, Tatarenko S, Mariette H |
2128 - 2131 |
Quantum transport and spin-orbit interaction in Al0.1In0.9Sb/InAs0.1Sb0.9 quantum wells Nishizako N, Manago T, Ishida S, Geka H, Shibasaki I |
2132 - 2134 |
Free carrier induced substrate heating of the epitaxially grown GaMnAs Novak V, Olejnik K, Cukr M |
2135 - 2138 |
Mn deposition on GaAs(001)-c(4 x 4)alpha reconstructed surfaces: A scanning-tunneling-microscopy study Komamiya D, Okabayashi J, Yoshino J |
2139 - 2142 |
Group-IV-diluted magnetic semiconductor FexSi1-x thin films grown by molecular beam epitaxy Su WF, Gong L, Wang JL, Chen S, Fan YL, Jiang ZM |
2143 - 2146 |
Structure and magnetic properties of Gd/Fe layers grown by MBE Miyagawa H, Shiraoka H, Tani M, Fujii K, Takahashi N, Koshiba S, Tanaka Y, Tsurumachi N, Nakanishi S, Itoh H |
2147 - 2150 |
Mn distribution behaviors and magnetic properties of GeMn films grown on Si (001) substrates Ogawa M, Han XH, Zhao ZM, Wang Y, Wang KL, Zou J |
2151 - 2154 |
Etching enhanced annealing of GaMnAs layers Olejnik K, Novak V, Cukr M, Masek J, Jungwirth T |
2155 - 2159 |
Observation of negative differential resistance from a Schottky-barrier structure embedded with Fe quantum dots Lok SK, Li BK, Wang JN, Wong GKL, Sou IK |
2160 - 2162 |
Coexistence of ferromagnetism and quantum Hall effect in Mn modulation-doped two-dimensional hole systems Wurstbauer U, Soda M, Jakiela R, Schuh D, Weiss D, Zweck J, Wegscheider W |
2163 - 2166 |
Growth of high-quality ZnO films on Al2O3 (0001) by plasma-assisted molecular beam epitaxy Park JS, Hong SK, Im IH, Ha JS, Lee HJ, Park SH, Chang JH, Cho MW, Yao T |
2167 - 2171 |
Investigation on the ZnO:N films grown on (0001) and (0 0 0 (1)over-bar) ZnO templates by plasma-assisted molecular beam epitaxy Park SH, Chang JH, Minegishi T, Park JS, Im IH, Ito M, Taishi T, Hong SK, Oh DC, Cho MW, Yao T |
2172 - 2175 |
Compared optical properties of ZnO heteroepitaxial, homoepitaxial 2D layers and nanowires Robin IC, Marotel P, Ei-Shaer AH, Petukhov V, Bakin A, Waag A, Lafossas M, Garcia J, Rosina M, Ribeaud A, Brochen S, Ferret P, Feuillet G |
2176 - 2178 |
Intersubband optical transitions in ZnO-based quantum wells grown by plasma-assisted molecular beam epitaxy Ohtani K, Belmoubarik M, Ohno H |
2179 - 2182 |
Structure analysis of epitaxial Gd2O3/Si(001) for high-k gate dielectric applications Watahiki T, Jenichen B, Shayduk R, Tinkham BP, Braun W, Riechert H |
2183 - 2186 |
High kappa dielectric single-crystal monoclinic Gd2O3 on GaN with excellent thermal, structural, and electrical properties Chang WH, Lee CH, Chang P, Chang YC, Lee YJ, Kwo J, Tsai CC, Hong JM, Hsu CH, Hong M |
2187 - 2190 |
Molecular beam epitaxy-grown Al2O3/HfO2 high-kappa dielectrics for germanium Lee WC, Chin BH, Chu LK, Lin TD, Lee YJ, Tung LT, Lee CH, Hong M, Kwo J |
2191 - 2194 |
Molecular beam epitaxy growth of neodymium-doped yttrium aluminum perovskite Kumaran R, Webster SE, Penson S, Li W, Tiedje T |
2195 - 2198 |
Metal-oxide-semiconductor devices with molecular beam epitaxy-grown Y2O3 on Ge Chu LK, Lee WC, Huang ML, Chang YH, Tung LT, Chang CC, Lee YJ, Kwo J, Hong M |
2199 - 2204 |
Control of thick single crystal erbium oxide growth on (111) silicon Smith RS, Sewell RH, Clark A, Atanackovic P |
2205 - 2207 |
Fe-layer-induced aligned 1D nanostructure on ZnSe surface Wang G, Lok SK, Chan SK, Wang C, Wong GKL, Sou IK |
2208 - 2211 |
MBE-grown Fe nanowires on a ZnS(100) surface Lok SK, Chan SK, Wong GKL, Sou IK |
2212 - 2214 |
Effect of Se/(Ga plus In) ratio on MBE grown Cu(In,Ga)Se-2 thin film solar cell Islam MM, Sakurai T, Ishizuka S, Yamada A, Shibata H, Sakurai K, Matsubara K, Niki S, Akimoto K |
2215 - 2219 |
Epitaxial films for Ge-Sb-Te phase change memory Shayduk R, Braun W |
2220 - 2223 |
Molecular beam epitaxy of Si/Ge nanoislands on stripe-patterned Si (001) substrates with different stripe orientations Matei D, Sanduijav B, Chen G, Hesser G, Springholz G |
2224 - 2226 |
Growth of ultra-thin fluoride heterostructures on Ge(111) for quantum devices Oshita T, Takahashi K, Tsutsui K |
2227 - 2231 |
RHEED intensity oscillation of C-60 layer epitaxial growth Nishinaga J, Kawaharazuka A, Horikoshi Y |
2232 - 2235 |
Crystalline and electrical characteristics of C-60-doped GaAs films Nishinaga J, Takada T, Hayashi T, Horikoshi Y |