119 - 120 |
Metabolic engineering Stephanopoulos G |
121 - 124 |
Increasing the flux in metabolic pathways : A metabolic control analysis perspective Fell DA |
125 - 132 |
Metabolic engineering : Techniques for analysis of targets for genetic manipulations Nielsen J |
133 - 138 |
A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients Vanrolleghem PA, Heijnen JJ |
139 - 148 |
On-line metabolic pathway analysis based on metabolic signal flow diagram Shi HD, Shimizu K |
149 - 153 |
Experimental determination of group flux control coefficients in metabolic networks Simpson TW, Shimizu H, Stephanopoulos G |
154 - 161 |
Application of mathematical tools for metabolic design of microbial ethanol production Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE |
162 - 169 |
How will bioinformatics influence metabolic engineering? Edwards JS, Palsson BO |
170 - 174 |
Multiple mechanisms controlling carbon metabolism in bacteria Saier MH |
175 - 190 |
Engineering protein-based machines to emulate key steps of metabolism (biological energy conversion) Urry DW, Peng SQ, Hayes LC, McPherson D, Xu J, Woods TC, Gowda DC, Pattanaik A |
191 - 195 |
Artificial promoters for metabolic optimization Jensen PR, Hammer K |
196 - 203 |
Overexpression of a cytosolic chaperone to improve solubility and secretion of a recombinant IgG protein in insect cells Ailor E, Betenbaugh MJ |
204 - 214 |
Metabolic engineering of bacteria for ethanol production Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW |
215 - 221 |
Genetic manipulation of acid and solvent formation in Clostridium acetobutylicum ATCC 824 Green EM, Bennett GN |
222 - 230 |
Metabolic effects of stress mediators on cultured hepatocytes Zupke CA, Stefanovich P, Berthiaume F, Yarmush ML |
231 - 239 |
Engineering polyphosphate metabolism in Escherichia coli : Implications for bioremediation of inorganic contaminants Keasling JD, Van Dien SJ, Pramanik J |
240 - 249 |
Rational engineering of the TOL meta-cleavage pathway Sheridan R, Jackson GA, Regan L, Ward J, Dunnill P |
250 - 253 |
In vivo C-13-NMR studies of polymer synthesis in Rhizobium meliloti M5N1 strain Tavernier P, Besson I, Portais JC, Courtois J, Courtois B, Barbotin JN |
254 - 257 |
C-13 tracer experiments and metabolite balancing for metabolic flux analysis : Comparing two approaches Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J |
258 - 262 |
Metabolite-balancing techniques vs. C-13 tracer experiments to determine metabolic fluxes in hybridoma cells Bonarius HPJ, Timmerarends B, de Gooijer CD, Tramper J |
263 - 266 |
A simple structured model describing the growth of Streptomyces lividans Daae EB, Ison AP |
267 - 271 |
Redesigning metabolic networks using mathematical programming Dean JP, Dervakos GA |
272 - 281 |
Cell cycle dependence of retroviral transduction : An issue of overlapping time scales Andreadis S, Fuller AO, Palsson BO |
282 - 291 |
Application of cybernetic models to metabolic engineering : Investigation of storage pathways Varner J, Ramkrishna D |
292 - 295 |
Stimulation of glucose catabolism through the pentose pathway by the absence of the two pyruvate kinase isoenzymes in Escherichia coli Ponce E, Martinez A, Bolivar F, Valle F |
296 - 298 |
Rational design of an improved induction scheme for recombinant Escherichia coli Mattanovich D, Kramer W, Luttich C, Weik R, Bayer K, Katinger H |
299 - 302 |
An experimental study on carbon flow in Escherichia coli as a function of kinetic properties and expression levels of the enzyme phosphoglucomutase Brautaset T, Petersen S, Valla S |
303 - 305 |
Uncoupled glycerol distribution as the origin of the accumulation of 3-hydroxypropionaldehyde during the fermentation of glycerol by Enterobacter agglomerans CNCM 1210 Barbirato F, Soucaille P, Camarasa C, Bories A |
306 - 308 |
Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid Miura Y, Kondo K, Shimada H, Saito T, Nakamura K, Misawa N |
309 - 315 |
Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans Saito Y, Ishii Y, Hayashi H, Yoshikawa K, Noguchi Y, Yoshida S, Soeda S, Yoshida M |
316 - 320 |
Allocation of ATP to synthesis of cells and hydrolytic enzymes in cellulolytic fermentative microorganisms : Bioenergetics, kinetics, and bioprocessing van Walsum GP, Lynd LR |
321 - 324 |
Yeast cell permeabilizing beta-1,3-glucanases : A tool for the integration of downstream processes and metabolic engineering applications to yeast Ferrer P, Diers I, Asenjo JA, Andrews BA |
325 - 328 |
High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium Wang FL, Lee SY |
329 - 332 |
Metabolic engineering of cultured tobacco cells Shinmyo A, Shoji T, Bando E, Nagaya S, Nakai Y, Kato K, Sekine M, Yoshida K |
333 - 338 |
Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus : Implications for metabolic engineering Shanks JV, Bhadra R, Morgan J, Rijhwani S, Vani S |
339 - 343 |
Production of L-DOPA(3,4-dihydroxyphenyl-L-alanine) from benzene by using a hybrid pathway Park HS, Lee JY, Kim HS |