295 - 295 |
Paper symposium - Fundamentals of electrophoresis Gas B, Bocek P |
297 - 319 |
Prefractionation techniques in proteome analysis: The mining tools of the third millennium Righetti PG, Castagna A, Antonioli P, Boschetti E |
320 - 330 |
Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA Lin YW, Huang MF, Chang HT |
331 - 350 |
End-labeled free-solution electrophoresis of DNA Meagher RJ, Won JI, McCormick LC, Nedelcu S, Bertrand MM, Bertram JL, Drouin G, Barron AE, Slater GW |
351 - 361 |
The efficiency of electrokinetic pumping at a condition of maximum work Griffiths SK, Nilson RH |
362 - 375 |
Motion of single long DNA molecules through arrays of magnetic columns Minc N, Bokov P, Zeldovich KB, Futterer C, Viovy JL, Dorfman KD |
376 - 382 |
A triple-injection method for microchip electrophoresis Tabuchi M, Baba Y |
383 - 390 |
Impact of reservoir potentials on the analyte behavior in microchip electrophoresis: Computer simulation and experimental validation for DNA fragments Xu ZQ, Nakamura Y, Hirokawa T |
391 - 404 |
Perspective on concentration polarization effects in electrochromatographic separations Tallarek U, Leinweber FC, Nischang I |
405 - 414 |
Field gradient electrophoresis Warnick KF, Francom SJ, Humble PH, Kelly RT, Woolley AT, Lee ML, Tolley HD |
415 - 425 |
Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part I: Characterization and application as novel pseudostationary phases Akbay C, Gill NL, Powe A, Warner IM |
426 - 445 |
Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: Characterization of chemical selectivity using two linear solvation energy relationship models Akbay C, Agbaria RA, Warner IM |
446 - 452 |
System zones in capillary zone electrophoresis: Moving boundaries caused by freely migrating hydrogen ions Beckers JL, Bocek P |
453 - 462 |
A new type of migrating zone boundary in electrophoresis: 1. General description of boundary behavior based on electromigration dispersion velocity profiles Gebauer P, Bocek P |
463 - 472 |
Analyte and system eigenpeaks in nonaqueous capillary zone electrophoresis: Theoretical description and experimental confirmation with methanol as solvent Vcelakova K, Zuskova I, Porras SP, Gas B, Kenndler E |
473 - 479 |
Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing Stoyanov AV, Das C, Fredrickson CK, Fan ZH |
480 - 486 |
Large-volume stacking in capillary electrophoresis using pH hysteresis of the electroosmotic flow in a bare fused-silica capillary Han JH, Chun MS, Riaz A, Chung DS |
487 - 493 |
Direct calculation of interconversion barriers in dynamic chromatography and electrophoresis: Isomerization of captopril Trapp O |
494 - 499 |
Analysis of biological motors via multidimensional fractionation: A strategy Serwer P |