327 - 328 |
Introduction: Modern topics in chemical sensing Janata J |
329 - 351 |
Potentiometric ion sensors Bobacka J, Ivaska A, Lewenstam A |
352 - 366 |
Amperometric gas sensors - A review Stetter JR, Li J |
367 - 399 |
Semiconductor junction gas sensors Potje-Kamloth K |
400 - 422 |
Optical chemical sensors McDonagh C, Burke CS, MacCraith BD |
423 - 461 |
Optical biosensors Borisov SM, Wolfbeis OS |
462 - 493 |
Surface plasmon resonance sensors for detection of chemical and biological species Homola J |
494 - 521 |
Nanostructured plasmonic sensors Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG |
522 - 542 |
Microcantilevers: Sensing chemical interactions via mechanical motion Goeders KM, Colton JS, Bottomley LA |
543 - 562 |
Radionuclide sensors for environmental monitoring: From flow injection solid-phase absorptiometry to equilibration-based preconcentrating minicolumn sensors with radiometric detection Grate JW, Egorov OB, O'Hara MJ, Devol TA |
563 - 613 |
Higher-order chemical sensing Hierlemann A, Gutierrez-Osuna R |
614 - 637 |
Very high density sensing arrays LaFratta CN, Walt DR |
638 - 651 |
Chemical sensors with integrated electronics Joo S, Brown RB |
652 - 679 |
Wireless sensor networks and chemo-/biosensing Diamond D, Coyle S, Scarmagnani S, Hayes J |
680 - 704 |
Chemical sensing in spatial/temporal domains Nakamoto T, Ishida H |
705 - 725 |
Electronic nose: Current status and future trends Rock F, Barsan N, Weimar U |
726 - 745 |
Hydrogen-bond acidic polymers for chemical vapor sensing Grate JW |
746 - 769 |
Composites of intrinsically conducting polymers as sensing nanomaterials Hatchett DW, Josowicz M |
770 - 813 |
Combinatorial and high-throughput development of sensing materials: The first 10 years Potyrailo RA, Mirsky VM |
814 - 825 |
Electrochemical glucose biosensors Wang J |
826 - 844 |
ISFET and fiber optic sensor technologies: In vivo experience for critical care monitoring McKinley BA |