2963 - 2990 |
Dynamical system analysis of ignition phenomena using the Tangential Stretching Rate concept Valorani M, Paolucci S, Martelli E, Grenga T, Ciottoli PP |
2991 - 2998 |
On the application of betweenness centrality in chemical network analysis: Computational diagnostics and model reduction Zhao P, Nackman SM, Law CK |
2999 - 3015 |
One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS Jozefik Z, Kerstein AR, Schmidt H, Lyra S, Kolla H, Chen JH |
3016 - 3029 |
LES flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame Popp S, Hunger F, Hartl S, Messig D, Coriton B, Frank JH, Fuest F, Hasse C |
3030 - 3045 |
Self-assembly template combustion synthesis of a core-shell CuO@TiO2-Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes Xu ZW, Zhao HB, Wei YJ, Zheng CG |
3046 - 3052 |
Dynamic sensing of blowout in turbulent CNG inverse jet flame Mahesh S, Mishra DP |
3053 - 3070 |
Shock-induced ignition of methane sensitized by NO2 and N2O Mathieu O, Pemelton JM, Bourque G, Petersen EL |
3071 - 3080 |
Ignition regimes in rapid compression machines Grogan KP, Goldsborough SS, Ihme M |
3081 - 3099 |
Sectional soot model coupled to tabulated chemistry for Diesel RANS simulations Aubagnac-Karkar D, Michel JB, Colin O, Vervisch-Kljakic PE, Darabiha N |
3100 - 3114 |
Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: Experiments and linear stability analysis Oberleithner K, Stohr M, Im SH, Arndt CM, Steinberg AM |
3115 - 3129 |
JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation Gao CW, Vandeputte AG, Yee NW, Green WH, Bonomi RE, Magoon GR, Wong HW, Oluwole OO, Lewis DK, Vandewiele NM, Van Geem KM |