- Previous Article
- Next Article
- Table of Contents
Journal of Adhesion Science and Technology, Vol.12, No.8, 795-812, 1998
A two-dimensional stress analysis of single-lap adhesive joints subjected to external bending moments
The stress distributions in single-lap adhesive joints of similar adherends subjected to external bending moments have been analyzed as a three-body contact problem using a two-dimensional theory of elasticity (plain strain state). In the analysis, both adherends and the adhesive were replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli of the adherends to that of the adhesive and the adhesive thickness on the stress distribution at the interfaces were examined. It was found that the stress singularity occurs at the edges of the interfaces and that the peel stress at the edges of the interfaces increases with decreasing Young's modulus of the adherends. It was noticed that the singular stress decreases at the edges of the interfaces as the adherend thickness increases. In addition, photoelastic experiments and FEM (finite element method) calculations were carried out and fairly good agreement was found between the analytical and the experimental results.
Keywords:BUTT JOINTS;SURFACE