IEEE Transactions on Energy Conversion, Vol.18, No.3, 386-391, 2003
Analytical model for permanent magnet motors with surface mounted magnets
This paper presents an analytical method of modeling permanent magnet (PM) motors. The model is dependent only on geometrical and materials data which makes it suitable for insertion into design programs, avoiding long finite element analysis (FEA) calculations. The modeling procedure is based on the calculation of the air gap field density waveform at every time instant. The waveform is the solution of the Laplacian/quasi-Poissonian field equations in polar coordinates in the air gap and takes into account slotting. The model allows the rated performance calculation but also such effects as cogging torque, ripple torque, back-emf form prediction, some of which are neglected in commonly used analytical models.