화학공학소재연구정보센터
IEEE Transactions on Energy Conversion, Vol.19, No.3, 607-612, 2004
Nonlinear model identification of wind turbine with a neural network
A nonlinear model of wind turbine based on a neural network (NN) is described for the estimation of wind turbine output power. The proposed nonlinear model uses the wind speed average, the standard deviation and the past output power as input data. An anemometer with a sampling rate of one second provides the wind speed data. The NN identification process uses a 10-min average speed with its standard deviation. The typical local data collected in September 2000 is used for the training, while those of October 2000 are used to validate the model. The optimal NN configuration is found to be 8-5-1 (8 inputs, 5 neurons on the hidden layer, one neuron on the output layer). The estimated mean square errors for the wind turbine output power are less than 1%. A comparison between the NN model and the stochastic model mostly used in the wind power prediction is done. This work is a basic tool to estimate wind turbine energy production from the average wind speed.