Clean Technology, Vol.18, No.3, 295-300, September, 2012
볼록한 지붕을 갖는 이방성 고분자 입자의 곡률반경 제어를 위한 마이크로몰딩 기술
Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof
E-mail:
초록
입자의 크기, 모양, 및 기능기를 제어할 수 있는 제조 기술은 화학, 생물, 재료과학, 화학 공학, 의약 그리고 생명공학과 같은 다양한 적용분야에 적용될 수 있는 중요한 기술중의 하나이다. 본 연구는 볼록한 지붕을 지니는 이방성 고분자 입자의 곡률제어를 위해 젖음성 유체를 도입한 새로운 미세몰딩(micromolding technique) 방법에 관한 것이다. 몰드의 종횡비 조절을 통하여 입자의 곡률 반경을 20 μm에서 70 μm까지 제어할 수 있었으며 서로 다른 습윤특성을 지닌 젖음성 용액을 이용하여 이
방성 고분자 입자의 높이와 곡률반경을 조절할 수 있었다. 본 연구에서 제시한 미세몰딩 기술은 저렴하고, 간단하고, 쉽고 빠른 방법으로 이방성 입자를 제작할 수 있으며 3차원 입자 모양의 정밀제어가 가능한 새로운 방법으로 판단된다.
Synthesis of well-defined particle with tunable size, shape, and functionalities is strongly emphasized for various applications such as chemistry, biology, material science, chemical engineering, medicine, and biotechnology. This study presents micromolding method for the fabrication of anisotropic particles with elegant control of curvature of covex roof. For the demostration of rapid fabrication of the particles, we have applied polydimethylsiloxane (PDMS) micromold as structure guiding template and wetting fluid to control curvature of roof of the particles. Based on this approach, we can control the radius of curvature from 20 μm to 70 μm with different aspect ratio of mold. In addition, wetting fluids with different wetting properties can also modulate the height and radius of curvature of the particles. We envision that this methodology is promising tool for precise control of particle shape in 3-dimensional space and new synthetic route for anisotropic particles with cost effective, simple, easy, and fast procedure.
- Julie AC, Samir M, Proc. Nat. Acad. Sci., 103, 4930 (2006)
- Julie AC, Yogesh KK, Samir M, J. Controlled Release., 121, 3 (2005)
- Sue DX, Anja S, Gabriela M, Cassandra D, Vasso A, Patricia LM, Magdalena P, Methods., 40, 1 (2006)
- Andreas W, Axel HEM, Soft Matt., 4, 663 (2008)
- Nagesh K, Shanta D, Pedro MV, Lucy QL, Rohit K, Stephen JL, Robert L, Omid CF, Proc. Nat. Acad. Sci., 10, 1073 (2010)
- Muller CC, Eur. J. Pharmaceutics and Biopharmaceutics., 58, 343 (2004)
- Park SH, Lim JH, Chung SW, Chad AM, Sci., 303, 348 (2004)
- Madivala B, Fransaer J, Vermant J, Langmuir, 25(5), 2718 (2009)
- Wang YP, Han P, Xu HP, Wang ZQ, Zhang X, Kabanov AV, Langmuir, 26(2), 709 (2010)
- Jianping G, Yongxing H, Yadong Y, Angew. Chem.Int. Ed., 46, 7428 (2007)
- Badaire S, Cottin-Bizonne C, Woody JW, Yang A, Stroock AD, J. Am. Chem. Soc., 129(1), 40 (2007)
- Sharon CG, Michael JS, Nat.Mater., 6, 557 (2007)
- Stephanie EAG, Patricia AR, Patrick DP, Christopher L, Victoria JM, Mary EN, Joseph MD, PNAS., 105, 11613 (2008)
- Akira H, Ryosuke K, Yoshinori T, Akihito H, Hiroyasu Y, Nat. Chem., 3, 34 (2011)
- Sugiura S, Nakajima M, Itou H, Seki M, Macromol. Rapid Commun., 22(10), 773 (2001)
- Sugiura S, Nakajima M, Seki M, Ind. Eng. Chem. Res., 41(16), 4043 (2002)
- Dhananjay D, Shelley SG, Daniel CP, Hatton TA, Patrick SD, Lab Chip., 7, 818 (2007)
- Ji HJ, Dhananjay D, Hatton TA, Edwin LT, Patrick SD, Angew. Chem. Int. Ed., 46, 9027 (2007)
- Dhananjay D, Patrick SD, Adv.Mater., 21, 1 (2009)
- Kai PY, Hwang DK, Ramin H, Patrick SD, Langmuir., 26, 4281 (2009)
- Julie AC, Yogesh KK, Samir M, Proc. Nat.Acad. Sci., 29, 11901 (2007)
- Choi CH, Lee JK, Yoon KS, Anubhav T, Howard AS, David AW, Lee CS, Angew. Chem. Int. Ed., 49, 7748 (2010)
- Samir M, Joerg L, Nat. Mater., 8, 15 (2009)
- Jillian LP, Kevin PH, Mary EN, Joseph MD, Acc. Chem. Res., 44, 990 (2011)
- Onoe H, Gel M, Hoshino K, Matsumoto K, Shimoyama I, Langmuir, 21(24), 11251 (2005)
- Shengqing X, Zhihong N, Seo MS, Patrick L, Eugenia K, Howard AS, Piotr G, Douglas BW, Irina G, George MW, Angew. Chem., 117, 734 (2005)
- Christina LL, Choi CH, Yan L, Lee CS, Yi HM, Anal. Chem., 82, 5851 (2010)
- Xu XL, Asher SA, J. Am. Chem. Soc., 126(25), 7940 (2004)