화학공학소재연구정보센터
International Polymer Processing, Vol.20, No.4, 423-431, 2005
Melt intercalation in montmorillonite/polystyrene nanocomposites
Atactic polystyrene (PS) was used to study the effect of flow field (shear and/or elongational) on the intercalation of polymer/clay nanocomposites (PNC). Three grades of (PS), with different molecular weights, were compounded with an ammonium-modified montmorillonite (Cloisite 10A) in a twin-screw extruder (TSE). The compounds were subsequently fed to a single screw extruder fitted with one of three specially designed torpedo-attachments. The attachments were designed to provide combinations of different levels of shear and elongational deformations. The resins, TSE compounds, and final PNC's were characterized for the degree of intercalation, degradation, rheological behavior, and mechanical properties. The data showed that the thermal decomposition of the quaternary ammonium intercalant caused severe damage to both PNC components: a collapse of the organoclay interlayer spacing, and the thermo-oxidative degradation of PS. In spite of these detrimental effects, the attachment employing combined elongational and shear flow resulted in generally larger gallery spacing and more improvement of the mechanical properties than the other two attachments.