Journal of Adhesion, Vol.83, No.1-3, 43-66, 2007
Surface modification of polycarbonate by ultraviolet radiation and ozone
The effect of ultraviolet (UV) radiation in the presence of ozone as a surface treatment for polycarbonate is examined in regards to changes in the wettability, adhesion, and surface mechanical properties. Standalone, 175-mu m-thick films of a commercially available polycarbonate were exposed to UV radiation from sources of different power with various treatment times in the presence of supplemental ozone. Significant decreases in the water contact angle were observed after exposure to UV radiation in the presence of ozone. After several variations in the experimental setup, it was determined that the change in water contact angle is a function of the UV irradiance and the work of adhesion follows a master curve versus UV irradiance. Nanoindentation experiments revealed that the modulus of the top 500 nm of the surface is increased following UV exposure, attributable to surface cross-linking. Adhesion tests to the surface (conducted by a pneumatic adhesion tensile test instrument) showed little change as a function of UV exposure. Analysis of adhesion test failure surfaces with X-ray Photoelectron Spectroscopy (XPS) showed the locus of bond failure lay within the bulk polycarbonate and the measured bond strength is limited by the bulk properties of the polycarbonate and/or the creation of a weak boundary layer within the polymer.