Journal of Adhesion Science and Technology, Vol.17, No.3, 397-408, 2003
Modified shear lag model for fibers and fillers with irregular cross-sectional shapes
For fibers with irregular cross sections such as ultrahigh modulus polyethylene (UHMPE) fibers and ribbon-like carbon fibers, the original shear lag model would not provide accurate calculations for interfacial shear stress because it assumes a circular fiber cross section. In this study, a modified shear lag model is proposed to calculate the interfacial shear stress that reflects the change of fiber cross-sectional shape. Microbond test on a UHMPE fiber/epoxy system was used for verification of the model. The difference between the interfacial shear strength (IFSS) calculated using the modified model and that using the original model assuming an equivalent fiber diameter was found to be as high as 15% and it linearly increased as the irregularity of the cross-sectional shape increased. When the irregularity constant exceeds 1.12, the error in IFSS involved in using the original shear lag model and an equivalent fiber diameter is greater than 10%.