화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.17, No.5, 655-675, 2003
Increasing strength of single lap joints of metal adherends by taper minimization
The effect of tapering the ends of the adherend on the joint strength and joint deformation behavior of a single lap joint geometry was studied. The joints were geometrically modeled using finite element (FE) techniques involving linear, as well as nonlinear (bilinear) material behavior. The FEA results were then compared with the experimental results for different single lap configurations, which had aluminum and steel adherends with different surface etch conditions, bonded using two different adhesives. The FEA results were found to be consistent with the experimental results with the normal and shear stresses significantly decreasing in the modified (tapered) geometries over those in unmodified geometries. The joint strength increased with decreasing taper angle, reaching a maximum at the smallest value considered (similar to10degrees).