Journal of Applied Electrochemistry, Vol.24, No.3, 212-218, 1994
Mathematical-Modeling of Electrode Growth
It is known that during electrodeposition or dissolution electrode shape change depends on the local current density (Faraday’s law in differential form). Assuming that concentration gradients in the bulk of the solution may be neglected, the current distribution in an electrochemical system can be modelled by a Laplace equation (describing charge transport) with nonlinear boundary conditions caused by activation and concentration over potentials on the electrodes. To solve this numerical problem, an Euler scheme is used for the integration of Faraday’s law with respect to time and the field equation is discretized using the boundary element method (BEM). In this way, and by means of a specially developed electrode growth algorithm, it is possible to simulate electrodeposition or electrode dissolution. In particular, attention is paid to electrode variation in the vicinity of singularities. It is pointed out that the angle of incidence between an electrode and an adjacent insulator becomes right (pi/2). This is confirmed by several experiments.