화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.24, No.3, 471-492, 2010
The Influence of Flame, Corona and Atmospheric Plasma Treatments on Surface Properties and Digital Print Quality of Extrusion Coated Paper
Polymer and paper structures have been successfully utilized in several fields, especially in the packaging industry. Together with barrier properties, printability is an important property in packaging applications. From the point of view of printing, the dense and impervious structure of extrusion coatings is challenging. Flame, corona and atmospheric plasma treatments were used to modify the surface of low density polyethylene (LDPE) and polypropylene (PP) and the influence of these surface modifications on print quality, i.e., toner adhesion and visual quality was studied. The traditional surface treatment methods, i.e., flame and corona treatments, increased the surface energy by introducing oxygen containing functional groups on the surfaces of LDPE and PP more than helium and argon plasma treatments. Only in the case of flame treatment, the higher surface energy and oxidation level led to better print quality, i.e., toner adhesion and visual quality, than the plasma treatments. The morphological changes observed on LDPE surface after flame treatment are partly responsible for the improved print quality. Atmospheric plasma treatments improved the print quality of LDPE and PP surfaces more than corona treatment. The electret phenomenon observed on LDPE and PP surfaces only after corona treatment is the most likely reason for the high print mottling and low visual quality of corona treated surface. (C) Koninklijke Brill NV, Leiden, 2010