화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.25, No.14, 1725-1746, 2011
The Effect of Different Surface Pretreatment Methods on Nano-adhesive Application in High Strength Steel and Aluminum Bonding
Epoxy adhesives (single and two components) modified with SiO(2) nano-particles were used in this investigation to glue aluminum alloy and also two types of high strength steel (dip-galvanized steel DP 600 and micro-alloyed steel ZStE340). To improve the adhesion between metal surfaces and adhesives, the metal surfaces were pretreated with: a self-indicating pretreatment (SIP*); corundum blasting; corundum blasting + a SIP coating; and a Pyrosil (R) treatment + SurALink (R) primer (PG 15 for epoxy adhesive). A single-lap shear tension test, done in accordance to DIN EN 1465, was used to determine the adhesive strength. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) analysis were used to analyze fractures that took place in the samples. The results showed that the adhesion strength of glued samples, containing the nano-particles modified adhesive, had significantly higher strength than unmodified ones. Pretreatment of the metal surfaces affected the adhesion, using nano-adhesives, only slightly. The adhesive strength values for single component epoxy resins were higher than those for two component epoxy resins. It was found that steel samples fractured adhesively at the steel surfaces. Aluminum treated samples indicated after pretreatment an increase in adhesive strength and the fracture occurred adhesively at the aluminum surfaces. Aluminum glued with two-component adhesives and pretreated with corundum blasting plus a SIP coating showed a mixed fracture mode; adhesively at the aluminum surface and cohesively in the adhesive layer. (C) Koninklijke Brill NV, Leiden, 2011