- Previous Article
- Next Article
- Table of Contents
Journal of Canadian Petroleum Technology, Vol.41, No.11, 52-59, 2002
Improved estimation of gas well deliverability from single-point tests
Chase and Alkandari developed dimensionless inflow performance (IPR) curves for predicting the stabilized deliverability of hydraulically fractured gas wells using just a single-point test, namely a pressure build-up or draw-down test. Unfractured wells can also be analysed by converting the apparent skin factor to an equivalent ratio of X-e/X-f. Results obtained from the dimensionless IPR curve model can be used to generate values of n and C for the equation of stabilized deliverability. This research describes the process used to evaluate the effectiveness of the single-point model using data from 25 Canadian well tests and nine simulated well tests. The tests were analysed using four-point test methods, the dimensionless IPR curve method, and by assuming that the exponent of the stabilized deliverability equation was equal to one. The mean absolute value of error between the AOF predicted using multi-point deliverability test analysis methods and the dimensionless IPR curve method for the 25 Canadian wells was 9.2%, with a standard deviation of 8.7%. The mean absolute value of error between the AOF predicted using multi-point deliverability test analysis methods and the dimensionless IPR curve method for the nine simulated wells was 5.6% with a standard deviation of 4.3%. The mean absolute value of error between the AOF predicted using multi-point test methods and by assuming that the exponent of the stabilized deliverability equation was equal to one for the 25 Canadian wells was 30.5% with a standard deviation of 25.2%. The dimensionless IPR curve model appears to offer a conservative, reasonably accurate, and economical method for predicting current and future gas well inflow performance from a single-point transient pressure test.