화학공학소재연구정보센터
Journal of Chemical and Engineering Data, Vol.56, No.12, 4592-4596, 2011
High-Pressure Phase Equilibrium and Raman Spectroscopic Studies on the 1,1-Difluoroethane (HFC-152a) Hydrate System
High-pressure phase equilibrium relations of the 1,1-difluoroethane (HFC-152a) + water binary system were investigated in a temperature range of (275.03 to 319.30) K and a pressure range up to 370 MPa. Four three-phase coexisting curves of hydrate + aqueous + gas phases, hydrate + HFC-152a-rich liquid + gas phases, hydrate + aqueous + HFC-152a-rich liquid phases, and aqueous + HFC-152a-rich liquid + gas phases originate from the quadruple point of hydrate + aqueous + HFC-152a-rich liquid HFC-152a + gas phases located at (288.05 +/- 0.15) K and (0.44 +/- 0.01) MPa. The structure of HFC-152a hydrate remains structure I (s-I) in the pressure range up to 370 MPa. Raman spectra of the HFC-152a molecule in the HFC-152a hydrate indicate that the HFC-152a molecules occupy only large cages of s-I HFC-152a hydrate in the presence of completely vacant small cages at a pressure up to 370 MPa.