Journal of Energy Engineering-ASCE, Vol.135, No.3, 64-72, 2009
Economic Transmission Planning Model Suitable for a Regulated Network Service Provider
Conventional transmission planning models are subject to constant debate in the context of competitive markets, due to the functional unbundling of transmission sector from generation and distribution sectors and due to the new environment regulations. A value-based transmission planning model is proposed, suitable for an unbundled transmission network service provider having no assets in the generation sector. The model minimizes the long-term transmission investment costs and the expected social costs incurred to its clients, energy producers, and consumers, in the power auctions due to transmission bottlenecks. The uncertainties involved when incorporating short-term market models into long-term planning models are modeled with probabilistic representations for the bid prices, the component availabilities, and the hourly load variations. These features make this model suitable in the new environment paradigm. Generalized Benders decomposition technique with nonsequential Monte Carlo technique is employed to solve the final stochastic mixed-integer optimization model. Case studies are given to illustrate the performance of this model by implementing it in the modified Garver's six-bus test system and the IEEE 24-bus reliability test system for a single planning year.