화학공학소재연구정보센터
Journal of Applied Electrochemistry, Vol.28, No.10, 1107-1112, 1998
Effect of brighteners on hydrogen evolution during zinc electroplating from zincate electrolytes
Hydrogen evolution during zinc electrodeposition on a steel substrate from zincate electrolytes containing different additives was studied using various experimental techniques. The hydrogen evolution reaction is limited by the electron transfer step. Hydrogen evolution is most intensive during the first seconds from the beginning of electrodeposition due to the lower overpotential of hydrogen on steel as compared with that on zinc. The evolved hydrogen is dissipated in three ways. Most is dissipated to the atmosphere via gas bubbles at a constant rate. Some is dispersed in the electrolyte some diffuses into the steel substrate, predominantly at the commencement of deposition. The additives affect both the total amount of evolved hydrogen and its distribution. The highest amount of hydrogen is evolved in the presence of the anisaldehyde bisulphite containing composite additive. The highest amount of hydrogen included in the substrate and remaining in the electrolyte corresponds to the use of the Na-N-benzylnicotinate containing additive. In this case blistering is observed.