화학공학소재연구정보센터
Journal of Solar Energy Engineering-Transactions of The ASME, Vol.126, No.3, 850-857, 2004
Solar gasification of biomass: A molten salt pyrolysis study
A novel solar process and reactor for thermochemical conversion of biomass to synthesis gas is described. The concept is based on dispersion of biomass particles in a molten inorganic salt medium and, simultaneously, absorbing, storing and transferring solar energy needed to perform pyrolysis reactions in the high-temperature liquid phase. A lab-scale reactor filled with carbonates of potassium and sodium was set up to study the kinetics of fast pyrolysis and the characteristics of transient heat transfer for cellulose particles (few millimeters size) introduced into the molten salt medium. The operating conditions were reaction temperatures of 1073-1188 K and a particle peak-heating rate of 100 K/sec. The assessments performed for a commercial-scale solar reactor demonstrate that pyrolysis of biomass particles dispersed in a molten salt phase could be a feasible option for the continuous, round-the-clock production of syngas, using solar energy only.