Journal of Solar Energy Engineering-Transactions of The ASME, Vol.129, No.4, 371-377, 2007
Development steps for parabolic trough solar power technologies with maximum impact on cost reduction
Besides continuous implementation of concentrating solar power plants (CSP) in Europe, which stipulate cost reduction by mass production effects, further R&D activities are necessary to achieve the cost competitiveness to fossil power generation. The European Concentrated Solar Thermal Roadmap (ECOSTAR) study that was conducted by European research institutes in the field of CSP intends to stipulate the direction for R&D activities in the context of cost reduction. This paper gives an overview about the methodology and the results for one of the seven different CSP system concepts that are currently under promotion worldwide and considered within ECOSTAR. The technology presented here is the Parabolic trough with direct steam generation (DSG), which may be considered as an evolution of the existing parabolic systems with thermal oil as heat transfer fluid. The methodology is explained using this exemplary system, and the technical improvements are evaluated according to their cost-reduction potential using a common approach, based on an annual performance model. Research priorities are given based on the results. The simultaneous implementation of three measures is required in order to achieve the cost-reduction target: Technical improvement by R&D, upscaling of the unit size, and mass production of the equipment.