KAGAKU KOGAKU RONBUNSHU, Vol.28, No.6, 666-672, 2002
Highly efficient production of synthesis gas by catalytic gasification of biomass at low reaction temperature
Conventional methods of biomass gasification to hydrogen and synthesis gas are carried Out at high temperature. The purpose of this study is to develop a novel catalytic process for biomass gasification at low temperature (773-873 K) with high energy efficiency. A cellulose was used as the model compound of biomass, and the performance of our catalysts was compered with those of dolomite and non -catalyst in batch- and continuous-feeding fluidized bed reactor. In reaction tests with various catalysts, Rh/CeO2 exhibited higher performance than other catalysts, but its deactivation was also observed during the reaction, caused by the sintering of the CeO2 support. A commercial steam reforming catalyst also showed high activity, but its deactivation due to carbon deposition was observed. We also prepared Rh/CeO2/SiO2, which gave higher C-conversion to gas and was more stable than Rh/CeO2. In comparison with conventional methods (dolomite, non-catalyst, Ni catalyst), it was found that the gasification using Rh/CeO2/SiO2 catalyst can give a higher yield of synthesis gas at much lower temperature and with higher stability.