화학공학소재연구정보센터
Materials Research Bulletin, Vol.40, No.5, 749-765, 2005
Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties
Novel silicon carbide/polypyrrole (SiC/PPy) conducting composites were prepared using silicon carbide as inorganic substrate. The surface modification of SiC was performed in aqueous solution by oxidative polymerization of pyrrole using ferric chloride as oxidant. Elemental analysis was used to determine the mass loading of polypyrrole in the SiC/PPy composites. Scanning electron microscopy showed the surface modification of SiC by PPy. PPy in composites was confirmed by the presence of PPy bands in the infrared spectra of SiC/PPy containing various amounts of conducting polymer. The conductivity of SiC/PPy composites depends on PPy content on the surface. The composite containing 35 wt.% PPy showed conductivity about 2 S cm(-1), which is in the same range as the conductivity of pure polypyrrole powder prepared under the same conditions using the same oxidant. PPy in the composites was clearly detected by X-ray photoelectron spectroscopy (XPS) measurements by its N1s and C12p peaks. Highresolution scans of the C1s regions distinguished between silicon carbide and polypyrrole carbons. The fraction of polypyrrole at the composite surface was estimated from the silicon and nitrogen levels. The combination of XPS and conductivity measurements suggests that the surface of the SiC/PPy composites is polypyrrole-rich for a conducting polymer mass loading of at least 12.6 wt.%. (c) 2005 Elsevier Ltd. All rights reserved.