화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.26, No.1, 19-30, 2006
Plasma-catalytic decomposition of phenols in atmospheric pressure dielectric barrier discharge
This study investigated the processes for the destruction of phenol and its derivatives (resorcin and pyrocatechol) in aqueous solutions under the action of an oxygen dielectric barrier discharge (DBD) at atmospheric pressure in the presence or absence of catalysts in the plasma zone. It was shown that the DBD had a high decomposition efficiency for phenol and its derivatives (up to 99%). Phenol was the most stable and pyrocatechol was the least. In a plasma-catalytic hybrid process, the effective rate constants for phenol, resorcin and pyrocatechol decomposition were 11, 4 and 2.5 times higher, respectively, than those for the DBD treatment without catalysts. The process also resulted in a 1.4, 1.6 and 1.2 times higher rate of carboxylic acid formation for phenol, resorcin and pyrocatechol, respectively. The fractional conversion into the respective carboxylic acids reached 56% for phenol and 68% for resorcin and pyrocatechol.