Plasma Chemistry and Plasma Processing, Vol.27, No.5, 559-576, 2007
Reforming of CO2-Containing natural gas using an AC gliding arc system: Effect of gas components in natural gas
The objective of the present work was to study the reforming of simulated natural gas via the nonthermal plasma process with the focus on the production of hydrogen and higher hydrocarbons. The reforming of simulated natural gas was conducted in an alternating current (AC) gliding arc reactor under ambient conditions. The feed composition of the simulated natural gas contained a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. To investigate the effects of all gaseous hydrocarbons and CO2 present in the natural gas, the plasma reactor was operated with different feed compositions: pure CH4, CH4/He, CH4/C2H6/He, CH4/C2H6/C3H8/He and CH4/C2H6/C3H8/CO2. The results showed that the addition of gas components to the feed strongly influenced the reaction performance and the plasma stability. In comparisons among all the studied feed systems, both hydrogen and C-2 hydrocarbon yields were found to depend on the feed gas composition in the following order: CH4/C2H6/C3H8/CO2 > CH4/C2H6/C3H8/He > CH4/C2H6/He > CH4/He > CH4. The maximum yields of hydrogen and C-2 products of approximately 35% and 42%, respectively, were achieved in the CH4/C2H6/C3H8/CO2 feed system. In terms of energy consumption for producing hydrogen, the feed system of the CH4/C2H6/C3H8/CO2 mixture required the lowest input energy, in the range of 3.58 x 10(-18)supercript stop-4.14 x 10(-18) W s (22.35-25.82 eV) per molecule of produced hydrogen.