Plasma Chemistry and Plasma Processing, Vol.32, No.1, 45-63, 2012
Torch Design Modification Using Micro-jets to Suppress Fluid Dynamic Instabilities in Plasma Arc Cutting
Highly constricted plasma arcs are widely used for metal cutting. One important characteristic of the cutting process is the consistency of the cut edge around the perimeter of the workpiece. Cut edge properties, including surface roughness, edge shape and dross formation, are presumed to depend on the local temperature and chemical composition of the cutting arc adjacent to the cut edge. Fluid dynamic instabilities in the arc boundary leading to entrainment of the low temperature ambient gas can have a strong effect on cutting performance. This paper describes the use of micro-jets to suppress fluid dynamic instabilities in the boundary layer of a plasma cutting arc. Previously developed optical diagnostics and analysis methods are used to characterize the arc boundary layer. Multiple nozzle designs have been investigated to quantify the effects of utilizing micro-jet flow around the arc column, and some relationships between nozzle design and cut quality are presented.