Journal of Applied Polymer Science, Vol.58, No.12, 2177-2184, 1995
Frp Composites Based on Different Types of Glass-Fibers and Matrix Resins - A Comparative-Study
Flexural properties, impact energy, heat deflection temperature, and resistance to thermal and hydrothermal degradation of composites based on E-glass and N-glass fibers as the reinforcing agents, and epoxy, unsaturated polyester, phenolic, and epoxy-phenolic resin systems as the matrix materials were studied and compared. As a reinforcing agent E-glass fiber is superior to N-glass fiber, particularly with respect to development of flexural strength and modulus, impact strength, and thermal resistance; N-glass fiber, however, imparts to the composites substantially higher resistance to hydrothermal degradation under boiling conditions in different chemical environments. For use of both E-glass and N-glass fibers as reinforcing agents, the general order of resistance to hydrothermal degradation for the composites based on different matrix resins is epoxy > phenolic > unsaturated polyester resin. Incorporation of a low dose of a rubbery polymer, such as styrene butadiene rubber (0.1-0.2%) and liquid polybutadiene (0.5-0.75%), in unsaturated polyester resin as the matrix resin measurably enhances impact energy of the composite.
Keywords:STRESS-CORROSION