화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.59, No.8, 1305-1314, 1996
Elongational Viscosity of Polymer Melts - A Lubricated Skin-Core Flow Approach
Previous work by this research group has shown that the use of a lubricated skin/core flow of polymer melts and a hyperbolic converging die results in an essentially pure elongational flow at a constant elongational strain rate in the core. The previous work was carried out on a laboratory-scale coextrusion system in a planar slit die; tracer particles and an image analysis system were used to confirm the predicted behavior. In this work, the technique was implemented first on the coextruder assembly, as a planar elongational rheometer, and then on a commercial capillary rheometer, as a uniaxial elongational rheometer for polymer melts. The later is achieved by replacing the standard capillary die with a hyperbolic axisymmetric die. A two-layered billet is prepared for placement in the rheometer barrel by completely encapsulating the core polymer (the polymer to be analyzed) with a low-viscosity polyethylene skin. Commercial grades of polypropylenes, syndiotactic polystyrene, and nylon-66 were analyzed using this technique. Elongational viscosity at high extensional rates can be determined with this method; values in excess of 500 s(-1) have already been achieved.