화학공학소재연구정보센터
Process Safety and Environmental Protection, Vol.85, No.B6, 507-514, 2007
Water network synthesis using mutation-enhanced particle swarm optimization
Different techniques for the synthesis of industrial water reuse/recycle networks have been developed in recent process integration research. These tools range from graphical pinch analysis approaches to mathematical programming models. The latter have the advantage of being flexible enough to incorporate various water network constraints, but in many cases these are often non-linear, thus making the identification of global optima difficult. Recent work has demonstrated the effectiveness of metaheuristic algorithms such as particle swarm optimization (PSO), for finding good solutions these problems. This work describes the use of a modified PSO for solving mixed integer non-linear programming (MINLP) models for water network synthesis. By incorporating a mutation operator for the binary variables in the model, the algorithm is able to escape sub-optimal network topologies and proceed towards better solutions than can be found with ordinary PSO. Two case studies involving water recycle/reuse are used to demonstrate the new design methodology.