화학공학소재연구정보센터
Solar Energy Materials and Solar Cells, Vol.76, No.1, 37-56, 2003
Dye-sensitized sputtered titanium oxide films for photovoltaic applications: influence of the O-2/Ar gas flow ratio during the deposition
Titanium oxide films were prepared by reactive DC magnetron sputtering onto SnO2:F coated glass substrates. The O-2/Ar gas flow ratio was kept at a constant value Gamma during the deposition, and a series of films were deposited with 0.050 < Gamma < 0.072. Structural studies were performed by X-ray diffraction and transmission electron microscopy; the structure displayed penniform features with a clear dependence on F. Charge transport in the films was evaluated by use of time-resolved photocurrents; a diffusion model was fitted to the experimental data and two different transport mechanisms were proposed depending on the film stoichiometry. Dye sensitization in cis-dithiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) was performed to evaluate incident photon-to-current conversion efficiency and solar cell properties of the films. These parameters showed a clear dependence on Gamma. Optical measurements gave evidence for the presence of polaron absorption for the film deposited at Gamma = 0.050. (C) 2002 Elsevier Science B.V. All rights reserved.