화학공학소재연구정보센터
Solar Energy Materials and Solar Cells, Vol.95, No.8, 2431-2436, 2011
An amorphous silicon random nanocone/polymer hybrid solar cell
This paper proposes and experimentally demonstrates an a-Si:H random nanocone/PEDOT:PSS/P3HT:PCBM hybrid solar cell to extend the absorption to near infrared and solve the difficulty of carrier transport through organic-inorganic interface. The internal electrical field inside a-Si:H random nanocone force holes move to the anode and electrons move to the cathode. The insertion of a layer of PEDOT:PSS conducting polymer between organic-inorganic interface could cause electrons and holes to partially recombine, thus establishing an electrically connected a-Si:H and P3HT:PCBM bulk heterojunction, which enables carriers transport through organic-inorganic interfaces efficiently. As compared to conventional polymer solar cells, the open-circuit voltage of hybrid solar cells was increased from 0.51 to 0.78 V. Additionally, the power conversion efficiency was increased from 1.73% to 2.22%, which demonstrates approximately 28% enhancement, indicating that the hybrid structure could largely increase the efficiency of polymer solar cells. (C) 2011 Elsevier B.V. All rights reserved.