Thin Solid Films, Vol.517, No.15, 4448-4454, 2009
Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts
Previous work on bulk ceramic heterocontacts (n-ZnO/p-CuO) has indicated significant sensitivity to the presence of specific adsorbed chemical species. Here, these results are extended to thin film heterostructures fabricated via chemical solution methods. It is expected that thin film sensor architectures will possess significant advantages over their bulk counterparts. In this study, the desired properties of porosity and crystallinity have been optimized with respect to pyrolysis temperature for each ZnO and CuO sol-gel process. The results of microscopy and X-ray diffraction (XRD) indicated that an optimal balance of these two properties is achieved at a pyrolysis temperature of 250 degrees C. The CuO films were seen to possess a level of porosity significantly higher than that seen in the ZnO films, making them an ideal candidate for the top layer in a planar thin film heterostructure. Results of current-voltage measurements conducted in 4000 ppm hydrogen have confirmed that the inherent porosity of the CuO films led to an enhanced sensor response in CuO on ZnO heterostructures. Lastly, the fabrication and structural characterization of a mixed solution type heterostructure has been detailed. Atomic force microscopy and XRD data indicated the presence of ZnO pillars dispersed among a matrix of CuO. (C) 2009 Elsevier B.V. All rights reserved.