화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.69, No.7, 1319-1327, 1998
Microscopical damage mechanisms in glass fiber reinforced polypropylene
The damage mechanisms in two structurally different glass mat reinforced polypropylene materials were studied. In situ microscopy was applied during the tensile testing of thin notched sheets. Micrographs of the damage processes in the two materials are presented. The major points of damage initiation were transversely oriented fibers and fiber bundles. In the swirled mat material, cracks grew along the fiber bundles; crack formation and growth was relatively unaffected by macroscopical stress concentration. In the short fiber material, crack growth occurred at the notch. In both materials the maximum load was determined by the fibers oriented in the longitudinal direction. The different damage mechanisms were interpreted in terms of damage zone size.