화학공학소재연구정보센터
Thin Solid Films, Vol.518, No.18, 5128-5133, 2010
Porous silicon oxide sacrificial layers deposited by pulsed-direct current magnetron sputtering for microelectromechanical systems
The development of silicon oxide layers with high etch rates to be used as sacrificial layers in surface micromachining for microsystems fabrication poses a great technological challenge. In this work, we have investigated the possibility of obtaining easily removable silicon oxide layers by pulsed-direct current (DC) magnetron reactive sputtering. We have carried out a comprehensive study of the influence of the deposition parameters (total pressure and gas composition) on the composition, residual stress and lateral etch rate in fluoride wet solutions of the films. This study has allowed to determine the sputtering conditions to deposit, at high rates (up to 0.1 mu m/min), silicon oxide films with excellent characteristics for their use as sacrificial layers. Films with roughness around 5 nm rms, residual stress below 100 MPa and very high lateral etch rate (up to 5 mu m/min), around 70 times higher than for thermal silicon oxide, have been achieved. The structural characteristics of these easily removable silicon oxide layers have been assessed by infrared spectroscopy and atomic force microscopy, which have revealed that the films exhibit a porous structure, related to very specific sputter conditions. Finally, the viability of these films has been demonstrated by using them as sacrificial layer in the fabrication process of AlN-based microresonators. (c) 2010 Elsevier B.V. All rights reserved.