화학공학소재연구정보센터
Thin Solid Films, Vol.520, No.5, 1625-1630, 2011
X-ray photoelectron spectroscopy on implanted argon as a tool to follow local structural changes in thin films
Argon ions were implanted in metallic, semiconducting or insulating substrates, and investigated with X-ray photoelectron spectroscopy. Analysis of the Ar2p core level of argon showed clear differences in binding energy position and width as function of the matrix material, implantation energy, and post-annealing treatment. Although argon is not expected to form chemical bonds with the host matrix, the electronic shells within the gas atom can react to their environment according to different effects. It is shown that the precise determination and correct interpretation of the binding energy levels of the embedded gas atoms provides information about the local environment of the matrix such as amorphization of the crystalline structure, defect healing or gas bubble formation. (C) 2011 Elsevier B.V. All rights reserved.