화학공학소재연구정보센터
Thin Solid Films, Vol.520, No.6, 2147-2154, 2012
The effect of helium ion implantation on the relaxation of strained InGaAs thin films
Previous work on pseudomorphic SiGe on Si has shown that a significant reduction in the threading dislocation density can be achieved through appropriate ion beam processing. Helium ion implantation was used in an analogous study to induce strain relaxation within strained pseudomorphic InGaAs layers on GaAs through the intentional introduction of subsurface damage without the introduction of surface nucleated dislocations and their associated threading segments. Wafers of fully-strained 28 nm thick films of In0.24Ga0.76As were separately implanted with helium doses of 5x10(14), 2x10(15), and 1x10(16) cm(-2) at 25 keV. These wafers became substrates for additional InGaAs film growth. The final InGaAs films always exhibited lower residual strain as compared to films grown directly on a control substrate of non-implanted GaAs. The broadening of the X-ray peaks indicates an increase in dislocation density within the InGaAs films and the strain relaxation was found to occur with a significant increase in surface roughness. This result stands in contrast to related work on SiGe films on Si where a reduction of the threading dislocation density within a SiGe film was observed. The reaction of the InGaAs/GaAs structure and materials to ion irradiation, with local disturbance to the stoichiometry, could preclude the use of ion beam techniques for realizing a reduction in threading dislocation density during strain relaxation. (C) 2011 Elsevier B.V. All rights reserved.