Thin Solid Films, Vol.520, No.7, 2461-2466, 2012
Electron back-scattered diffraction of crystallized vanadium dioxide thin films on amorphous silicon dioxide
Crystalline films and isolated particles of vanadium dioxide (VO2) were obtained through solid phase crystallization of amorphous vanadium oxide thin films sputtered on silicon dioxide. Electron back-scattered diffraction (EBSD) was used to study the crystals obtained in the thin films, to differentiate them from different vanadium oxide stoichiometries that may have formed during the annealing process, and to study their phase and orientation. EBSD showed that the crystallization process yielded crystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated particles, and did not show evidence of other vanadium oxide stoichiometries present. Indexing of the crystals for the orientation study was performed using EBSD patterns for the tetragonal phase of vanadium dioxide, since it was observed that EBSD patterns for the monoclinic and tetragonal phases of vanadium dioxide are not distinguishable by computer automated indexing. Using the EBSD patterns for the tetragonal phase of vanadium dioxide, orientation maps showed that all VO2 crystals that were measurable (approximately the thickness of the film) had a preferred orientation with the c-axis of the tetragonal phase parallel to the plane of the specimen. (C) 2011 Elsevier B.V. All rights reserved.
Keywords:Electron Backscattering Diffraction;Vanadium dioxide;Orientation imaging microscopy;Texture