화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.1, 187-193, January, 2013
Critical properties and acentric factors of ionic liquids
E-mail:
Since most ionic liquids (ILs) decompose before reaching their critical state, the experimental measurement of their critical properties are not possible. In this study, the critical temperatures, critical pressures and acentric factors of ten commonly investigated ILs were determined by making an optimum fit of the calculated vapor-liquid equilibrium data of binary mixtures of CO2+IL to the experimental values found in literature. For this purpose, the Peng-Robinson equation of state (PR EoS) and the differential evolution optimization method were used. The ILs considered were 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][Tf2N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf2N]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([hmim][Tf2N]), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). To evaluate the ability of the determined parameters in predicting the phase behavior of systems other than the systems that were used for parameter optimization, both sets of parameters obtained in this work and that of Valderrama et al. were used to predict bubble-point pressures of CHF3+[bmim][PF6] (by using the PR EoS and the Soave-Redlich-Kwong equation of state. The bubble-point pressures of CO2+IL systems optimized in this study by the PR EoS were also determined using the Soave-Redlich-Kwong equation of state (SRK EoS). In addition, liquid densities of pure ILs were predicted using a generalized correlation proposed by Valderrama and Abu-Shark. In all cases, the various predicted properties of these ten ILs, were in better agreement with the experimental data, using the critical properties and acentric factor obtained in this study, compared to the values suggested by Valderrama et al.
  1. Kroon MC, Combined Reactions and Separations Using Ionic Liquids and Carbon Dioxide, PhD Thesis, Printed by Koninklijke De Swart, Printed in the Hague, The Netherlands (2006)
  2. Kroon MC, Karakatsani EK, Economou IG, Witkamp GJ, Peters CJ, J. Phys. Chem. B, 110(18), 9262 (2006)
  3. Earle MJ, Seddon KR, Pure. Appl. Chem., 72, 1391 (2000)
  4. Wasserscheid P, Welton T, Ionic Liquids in Synthesis, Wiley-VCH Verlag, Weinheim, Germany (2003)
  5. Buzzeo MC, Evans RG, Compton RG, Chem. Phys. Chem., 5(8), 1106 (2004)
  6. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M, Inorg. Chem., 35(5), 1168 (1996)
  7. Olivier-Bourbigou H, Magna L, J. Mol. Catal. A., 182-183, 419 (2002)
  8. Welton T, Coord. Chem. Rev., 248(21-24), 2459 (2004)
  9. Chiappe C, Pieraccini D, J. Phys. Org. Chem., 18, 275 (2005)
  10. Donata DC, F. Marida and H. Migen, University of Torino, http://lem.ch.unito.it/didattica/infochimica/Liquidi%20Ionici/Definition.html. (2006)
  11. Gorman J, Sci. News., 160, 156 (2001)
  12. Ally MR, Braunstein J, Baltus RE, Dai S, DePaoli DW, Simonson JM, Ind. Eng. Chem. Res., 43(5), 1296 (2004)
  13. Brennecke JF, Maginn EJ, AIChE J., 47(11), 2384 (2001)
  14. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD, Chem. Commun., 16, 1765 (1998)
  15. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R, J. Membr. Sci., 238(1-2), 57 (2004)
  16. Urukova I, Vorholz J, Maurer G, J. Phys. Chem. B, 109(24), 12154 (2005)
  17. Anthony JL, Aki SNVK, Maginn EJ, Brennecke JF, Int. J. Environ. Technol. Manage., 4(1-2), 105 (2004)
  18. Zhao H, Xia SQ, Ma PS, J. Chem. Technol. Biotechnol., 80(10), 1089 (2005)
  19. Fortunato R, Afonso CAM, Reis MAM, Crespo JG, J. Membr. Sci., 242(1-2), 197 (2004)
  20. Matsumoto M, Inomoto Y, Kondo K, J. Membr. Sci., 246(1), 77 (2005)
  21. Shariati A, Raeissi S, Peters CJ, CO2 Solubility in Alkylimidazolium-Based Ionic Liquids, Book Chapter in Developments and Applications in Solubility, Ed. Letcher TM, The Royal Society of Chemistry, Cambridge (2007)
  22. Valderrama JO, Robles PA, Ind. Eng. Chem. Res., 46(4), 1338 (2007)
  23. Valderrama JO, Sanga WW, Lazzus JA, Ind. Eng. Chem. Res., 47(4), 1318 (2008)
  24. Lydersen AL, Estimation of Critical Properties of Organic Compounds.Report 3 University of Wisconsin, College of Engineering, Engineering Experimental Station: Madison, WI (1955)
  25. Joback KK, Reid R, Chem. Eng. Commun., 57, 233 (1987)
  26. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
  27. Danesh A, PVT and Phase Behaviour of Petroleum Reservoir Fluids, Elsevier B.V. (1998)
  28. Shariati A, Peters CJ, J. Supercrit. Fluids, 29(1-2), 43 (2004)
  29. Schilderman AM, Raeissi S, Peters CJ, Fluid Phase Equilib., 260(1), 19 (2007)
  30. Kroon MC, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters CJ, J. Chem. Eng. Data, 50(1), 173 (2005)
  31. Kamps APS, Tuma D, Xia JZ, Maurer G, J. Chem. Eng. Data, 48(3), 746 (2003)
  32. Raeissi S, Peters CJ, J. Chem. Eng. Data, 54(2), 382 (2009)
  33. Costantini M, Toussaint VA, Shariati A, Peters CJ, Kikic I, J. Chem. Eng. Data, 50(1), 52 (2005)
  34. Shariati A, Peters CJ, J. Supercrit. Fluids, 30(2), 139 (2004)
  35. Kumelan J, Kamps IPS, Tuma D, Maurer G, J. Chem. Thermodyn., 38(11), 1396 (2006)
  36. Gutkowski KI, Shariati A, Peters CJ, J. Supercrit. Fluids, 39(2), 187 (2006)
  37. Zhang SJ, Yuan XL, Chen YH, Zhang XP, J. Chem. Eng. Data, 50(5), 1582 (2005)
  38. Storn R, J. Global Optimization., 11, 341 (1997)
  39. Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)
  40. Babu BV, Chakole PG, Mubeen JHS, Chem. Eng. Sci., 60(17), 4822 (2005)
  41. Babu BV, Angira R, Comput. Chem. Eng., 30(6-7), 989 (2006)
  42. Price K, Storn R, Dr. Dobb’s Journal., 22, 18 (1997)
  43. Rebelo LPN, Lopes JNC, Esperanca JMSS, Filipe E, J. Phys. Chem. B, 109(13), 6040 (2005)
  44. Soave G, Chem. Eng. Sci., 27, 1197 (1972)
  45. Shariati A, Peters CJ, J. Supercrit. Fluids, 25(2), 109 (2003)
  46. Valderrama JO, Abu-Shark B, Fluid Phase Equilib., 51, 87 (1989)
  47. Spencer CF, Danner RP, J. Chem. Eng. Data., 17, 236 (1972)
  48. Blanchard LA, Gu ZY, Brennecke JF, J. Phys. Chem. B, 105(12), 2437 (2001)
  49. Gardas RL, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, J. Chem. Eng. Data, 52(1), 80 (2007)
  50. Gardas RL, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, J. Chem. Eng. Data, 52(5), 1881 (2007)
  51. Wypych G, Handbook of Solvents; ChemTec Publishing, Toronto, New York (2001)
  52. Letcher TM, Reddy P, Fluid Phase Equilib., 219(2), 107 (2004)
  53. Kato R, Gmehling J, J. Chem. Thermodyn., 37(6), 603 (2005)