화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.6, 2059-2068, November, 2012
Reaction kinetics determination and neural networks modeling of methanol dehydration over nano γ-Al2O3 catalyst
E-mail:
In this research nano γ-Al2O3 catalyst was synthesized through precipitation process then characterized and utilized for methanol dehydration reaction in a slurry batch reactor in route to the indirect synthesis of the dimethyl ether (DME). In this venue, effects of the key parameters on methanol conversion and catalyst stability were investigated. Moreover, the internal and external mass transfer resistances were eliminated; hence the intrinsic kinetics controlled the reaction. Therefore, the optimum conditions for temperature, methanol concentration, catalyst mass and stirrer speed were determined to be 300 ℃, 1.18 mol/l, 1.5 g and 1100 rpm, respectively. Next, different reaction rate equations from literature were applied to the measured experimental data where their generality compared to a new reaction rate equation examined. Ultimately, artificial neural networks applied to determine a model for the reaction rate estimation. It has been shown that the proposed reaction rate equation might be used rather satisfactorily to provide a base model for the neural networks; consequently a very good proximity to the reaction dynamics resulted.
  1. Olah GA, Goeppert A, Prakash GK, Beyond Oil and Gas: The Methanol Economy, WILEY-VCH, Weinheim (2006)
  2. Raloof F, Taghizadeh M, Eliassi A, Yaripour F, Fuel, 87(13-14), 2967 (2008)
  3. Ohno Y, Inoue N, Ogawa T, Ono M, Shikada T, Hayashi H, NKK Technical Review., 85, 23 (2001)
  4. Arcoumanis C, Bae C, Crookes R, Kinoshita E, Fuel, 87(7), 1014 (2008)
  5. Mao DS, Yang WM, Xia JC, Zhang B, Lu GZ, J. Mol. Catal. A-Chem., 250(1-2), 138 (2006)
  6. Wang S, Mao D, Guo X, Wu G, Lu G, Catalysis Communications., 10, 1367 (2009)
  7. Moradi GR, Ghanei R, Yaripour F, Journal of Chemical Reactor Engineering., Article A14 (2007)
  8. Dai W, Kong W, Wu G, Li N, Li L, Guan N, Catalysis Communications., 12, 535 (2011)
  9. Ha KS, Lee YJ, Bae JW, Kim YW, Woo MH, Kim HS, Park MJ, Jun KW, Appl. Catal. A: Gen., 395(1-2), 95 (2011)
  10. Yaripour F, Baghaei F, Schmidt I, Perregaard J, Catalysis Communications., 6, 147 (2005)
  11. Liu DH, Yao CF, Zhang JQ, Fang DY, Chen DS, Fuel, 90(5), 1738 (2011)
  12. Zaherian A, Kazemeini M, Aghaziarati M, Alamolhoda S, Journal of Porous Materials, Online First, 7 April, 1 (2012)
  13. Spivey J, Chemical Engineering Communications., 110, 123 (1991)
  14. Aguayo AT, Erena J, Mier D, Arandes JM, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 46(17), 5522 (2007)
  15. Vishwanathan V, Jun KW, Kim JW, Roh HS, Appl. Catal. A: Gen., 276(1-2), 251 (2004)
  16. Pansanga K, Panpranot J, Mekasuwandumrong O, Satayaprasert C, Goodwin JG, Praserthdam P, Catalysis Communications., 9, 207 (2008)
  17. Meephoka C, Chaisuk C, Samparnpiboon P, Praserthdam P, Catalysis Communications., 9, 546 (2008)
  18. Parida KM, Pradhan AC, Das J, Sahu N, Mater. Chem. Phys., 113(1), 244 (2009)
  19. Khademi MH, Farsi M, Rahimpour MR, Jahanmiri A, Chem. Eng. Process., 50(1), 113 (2011)
  20. Bercic G, Levec J, Industrial & Engineering Chemistry Research., 31(4), 1035 (1992)
  21. Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54(15-16), 3587 (1999)
  22. Royaee SJ, Falamaki C, Sohrabi M, Siamak S, Talesh A, Appl. Catal. A: Gen., 338(1-2), 114 (2008)
  23. Moradi G, Yaripour F, Abbasian H, Rahmanzadeh M, Korean J. Chem. Eng., 27(5), 1435 (2010)
  24. Weizhu A, Chuang KT, Sanger AR, Canadian Journal of Chemical Engineering., 82, 106 (2004)
  25. Moradi GR, Ahmadpour J, Yaripour F, Chem. Eng. J., 144(1), 88 (2008)
  26. Kasaie M, Sohrabi M, Journal of Mexican Chemical Society., 53(4), 233 (2009)
  27. Lee EY, Park YK, Joo OS, Jung KD, React. Kinet. Catal. Lett., 89(1), 115 (2006)
  28. Ptaszek A, Grzensik M, Process Engineering., 31, 43 (2010)
  29. Yotaro O, Takashi G, Tsutomu S, Yasuto A, 18th Congress on World Energy Council, Buenos Aires (2001)
  30. Alamolhoda S, Kazemeini M, Khandan N, Zaherian A, 7th International Chemical Engineering Congress, Kish, Iran (2011)
  31. Semelsberger TA, Borup RL, Greene HL, J. Power Sources, 156(2), 497 (2006)
  32. Fogler HS, Elements of Chemical Reaction Engineering, Prentice-Hall, New Jersey (1999)
  33. Fu Y, Hong T, Chen J, Auroux A, Shen J, Thermochimica Acta., 434, 22 (2005)
  34. Klusacek K, Schneider P, Chemical Engineering Science., 37, 1523 (1982)
  35. Song W, Venimadhavan G, Manning JM, Malone MF, Doherty MF, Ind. Eng. Chem. Res., 37(5), 1917 (1998)
  36. Valeh-e-Sheyda P, Yaripour F, Moradi G, Saber M, Ind. Eng. Chem. Res., 49(10), 4620 (2010)
  37. McClelland J, Rumelhart D, Parallel Distributed Processing, The MIT Press, Cambridge (1986)
  38. Hornik K, Stinchcome M, White H, Neural Networks., 2, 359 (1989)
  39. Hornik K, Neural Networks., 4, 251 (1991)
  40. Haykin S, Neural Networks and Learning Machines, 3rd ed., Pearson Education, New York (2008)
  41. Bishop C, International Journal of Neural System., 2, 229 (1991)