Macromolecular Research, Vol.20, No.11, 1163-1172, November, 2012
Conformational Dynamics of Sub-Micron Sized Wormlike Polyelectrolyte Polymer in Flow Fields
E-mail:,
Conformational dynamics of a single chain of wormlike polyelectrolyte xanthan polymer has been investigated in the external flow fields by employing a well-suited coarse-grained Brownian dynamics simulation. This goes beyond other simulations, which do not consider the hydrodynamic interaction between pairs of beads in polyelectrolyte polysaccharide and the long-range electrostatic screening effect. Conformational properties, such as the radius of gyration and the static structure factor, were unchanged with the flow strength parameter (i.e., Weissenberg number) in the uniform flow. However, influences by flow strength as well as flow type were evident in both simple shear and extensional-like flows with non-zero velocity gradients in flow regimes, commonly exhibiting a sigmoidal transition in the radius of gyration. Transition to a higher plateau, and independence of long-range electrostatic screening on chain conformation, can be encountered earlier with increasing flow strength, as a special feature of a
polyelectrolyte in extensional-like flow. The translational self-diffusion coefficient increases when increasing either the flow strength or the electrostatic screening effect in uniform and simple shear flows. Scaling behavior of the static structure factor is quite well-correlated with respect to each flow field, where the Flory-Edwards exponent (ν) decreases with higher values of flow strength and flow type parameters, but for lower screening effect. Present results on the mesoscopic scale devoted to the bulk space can readily serve as the basis for further scrutiny of the behavior of wormlike polyelectrolytes within various flow fields in confined spaces.
Keywords:polyelectrolyte polymer;xanthan;conformational dynamics;flow field;Brownian dynamics simulation;structure factor.
- Daoud M, de Gennes PG, J. Phys. France., 38, 85 (1977)
- Kremer K, Binder K, Comput. Phys. Rep., 7, 259 (1988)
- van Vliet JH, ten Brinke G, J. Chem. Phys., 93, 1436 (1990)
- Barrat JL, Joanny JF, Adv. Chem. Phys., 94, 1 (1996)
- Holm C, Kekicheff P, Podgornik R, Eds., in NATO Science Series II-Mathematics, Physics and Chemistry, Kluwer Publishers, Dordrecht, 46 (2001)
- Balducci A, Mao P, Han JY, Doyle PS, Macromolecules, 39(18), 6273 (2006)
- Lin PK, Fu CC, Chen YL, Chen YR, Wei PK, Kuan CH, Fann WS, Phys. Rev. E., 76, 011806 (2007)
- Ottinger HC, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms, Springer, Heidelberg (1996)
- Rastogi SR, Wagner NJ, Lustig SR, J. Chem. Phys., 104(22), 9234 (1996)
- Jian HA, Vologodskii V, Schlick T, J. Comput. Phys., 136, 168 (1997)
- Hur JS, Shaqfeh ESG, Larson RG, J. Rheol., 44(4), 713 (2000)
- Hur JS, Shaqfeh ESG, Babcock HP, Smith DE, Chu S, J. Rheol., 45(2), 421 (2001)
- Lee JS, Kim JM, Macromol. Res., 17(10), 807 (2009)
- Jendrejack RM, de Pablo JJ, Graham MD, J. Chem. Phys., 116(17), 7752 (2002)
- Jendrejack RM, Schwartz DC, Graham MD, de Pablo JJ, J. Chem. Phys., 119(2), 1165 (2003)
- Jendrejack RM, Schwartz DC, de Pablo JJ, Graham MD, J. Chem. Phys., 120(5), 2513 (2004)
- Chen YL, Graham MD, de Pablo JJ, Randall GC, Gupta M, Doyle PS, Phys. Rev. E., 060901R, 70 (2004)
- Sunthar P, Prakash JR, Macromolecules, 38(2), 617 (2005)
- Jeon J, Chun MS, J. Chem. Phys., 126, 154904 (2007)
- Paradossi G, Brant DA, Macromolecules., 15, 874 (1982)
- Sato T, Norisuye T, Fujita H, Macromolecules., 17, 2696 (1984)
- Chun MS, Kim C, Lee DE, Phys. Rev. E., 79, 051919 (2009)
- Doi M, Edwards SF, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986)
- Stein D, van der Heyden FHJ, Koopmans WJA, Dekker C, Proc. Natl. Acad. Sci. U.S.A., 103, 15853 (2006)
- Masliyah JH, Bhattacharjee S, Electrokinetic and Colloid Transport Phenomena, John Wiley & Sons, Inc., Hoboken (2006)
- Victor JM, J. Chem. Phys., 95, 600 (1991)
- Vilgis TA, Borsali R, Phys. Rev. A., 43, 6857 (1991)
- Micka U, Kremer K, Phys. Rev. E., 54, 2653 (1996)
- de Gennes PG, Scaling Concept in Polymer Physics, Cornell University Press, Ithaca (1979)
- Rubinstein M, Colby RH, Polymer Physics, Oxford University Press, Oxford (2003)
- Ermak DL, McCammon JA, J. Chem. Phys., 69, 1352 (1978)
- Rotne J, Prager S, J. Chem. Phys., 50, 4831 (1969)
- Warner HR, Ind. Eng. Chem. Fund., 11, 379 (1972)
- Dhar A, Chaudhuri D, Phys. Rev. Lett., 89, 065502 (2002)
- Sohn JI, Kim CA, Choi HJ, Jhon MS, Carbohydr.Polym., 45, 61 (2001)