Polymer(Korea), Vol.36, No.6, 739-744, November, 2012
Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향
Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons
E-mail:
초록
본 연구에서는 합성한 styrene-acrylonitrile(SAN) 전구체를 기반으로 한 탄소를 제조하였다. 그 제조된 탄소는 화학적 환원법으로 활성화하였고, 그 활성화된 SAN 기반 탄소를 A-SAN이라 명명하였다. 전기이중층 커패시터의 전극용 A-SAN 기반 탄소의 표면 특성과 전기화학적 특성에 있어서 활성화 온도에 의한 효과를 확인하기 위해 다양한 온도에서 활성화를 진행하였다. A-SAN의 특성분석을 위해 X-선 회절분석법(XRD), 주사전자현미경(SEM) 그리고 비표면적 장치에 의해 조사되었다. 또한 전기화학적 거동은 순환전류전압과 정전류 충방전법으로 측정하였다. 그 실험 결과로부터, A-SAN 700이 우수한 전기화학적 특성과 가장 높은 비축전용량 값을 보였지만, 활성화 온도가 700 ℃가 넘으면 이러한 특성들은 감소했다. 이것은 700 ℃ 이상의 온도에서의 활성화가 마이크로 기공 구조의 변형을 야기하기 때문인 것으로 사료된다.
In this work, we prepared the carbons from synthesized styrene-acrylonitrile carbon precursor. The prepared carbons were chemically activated, and then the activated SAN-based carbons were named as A-SANs. The activations were carried out at different temperatures to investigate the effect of activation temperature on the surface and electrochemical properties of the activated SAN-based carbons for using as an electrode of electric double layer capacitors (EDLC). The characteristics of A-SAN were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and pore size analysis. Also, the electrochemical behaviors were observed by cyclic voltammetry and galvanostatic charge-discharge method. From the results, the A-SAN 700 showed excellent electrochemical property and the highest specific capacitance, but these properties decreased when the activation temperature was above 700 ℃. This is due to the fact that the activation at a temperature over 700 ℃ causes deformation of micropore structures.
Keywords:electric double layer capacitors (EDLC);styrene-acrylonitrile (SAN);chemical activation;electrochemical properties.
- Miller JR, Simon P, Science., 321, 651 (2008)
- Xu B, Wu F, Su YF, Cao GP, Chen S, Zhou ZM, Yang YS, Electrochim. Acta, 53(26), 7730 (2008)
- Zhao S, Wang CY, Chen MM, Wang J, Shi ZQ, J.Phys. Chem. Solids., 70, 1256 (2009)
- Han SJ, Kim YH, Kim KS, Park SJ, Curr. Appl. Phys., 12(4), 1039 (2012)
- Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
- Li HQ, Liu RL, Zhao DY, Xia YY, Carbon., 45, 2628 (2007)
- Sevilla M, Alvarez S, Centeno TA, Fuertes AB, Stoeckli F, Electrochim. Acta, 52(9), 3207 (2007)
- Xu B, Wu F, Chen S, Zhang CZ, Cao GP, Yang YS, Electrochim. Acta, 52(13), 4595 (2007)
- Kim KS, Park SJ, Carbon Lett., 13, 51 (2012)
- Roh KC, Park JB, Lee CT, Park CW, J. Ind. Eng.Chem., 14, 2 (2008)
- Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science., 313, 1760 (2006)
- Fang BZ, Binder L, Electrochim. Acta, 52(24), 6916 (2007)
- Seo MK, Park SJ, Curr. Appl. Phys., 10(1), 241 (2010)
- Seo MK, Park SJ, Mater. Sci. Eng., B 164, 106 (2009)
- Zheng H, Kim MS, Carbon Lett., 12, 243 (2011)
- Xu B, Wu F, Chen RJ, Cao GP, Chen S, Yang YS, J. Power Sources, 195(7), 2118 (2010)
- Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H, Electrochem. Commun., 10, 868 (2008)
- Park SJ, Jung WY, Carbon., 40, 2021 (2002)
- Janes A, Lust E, J. Electrochem. Soc., 153(1), A113 (2006)
- Kim JI, Kim IJ, Park SJ, J. Kor. Chem. Soc., 54, 93 (2010)
- Kim BJ, Park SJ, Polym.(Korea), 35(1), 35 (2011)
- Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H, Appl. Therm. Eng., 28, 865 (2008)
- Takagi H, Maruyama K, Yoshizawa N, Yamada Y, Sato Y, Fuel, 83(17-18), 2427 (2004)
- Park SJ, Jin SY, Kawasaki JK, J. Kor. Ind. Eng. Chem., 14, 8 (2003)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, New York (1982)
- Kim JI, Rhee KY, Park SJ, J. Colloid Interface Sci., 377, 307 (2012)
- Blazewicz S, Swiatkowski A, Trznadel BJ, Carbon., 37, 693 (1999)