화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.2, 440-447, February, 2013
Kinetic and thermodynamic study of Eu(III) sorption on natural red earth in South China
E-mail:
We did a kinetic and thermodynamic study of Eu(III) sorption on natural red earth (NRE) in South China as a function of contact time, pH values, ionic strength, humic acid (HA) and temperature under ambient conditions. Linear and nonlinear regression methods in selecting the optimum sorption isotherm were applied on the experimental data. The results suggest that sorption of Eu(III) on NRE can be described by a pseudo-second-order rate equation and strongly dependent on ionic strength at pH<7. Sorption of Eu(III) on NRE increased with increasing temperature, two-parameter and three-parameter isotherms were applied to analysis the equilibrium adsorption data, and a comparison of linear and nonlinear regression methods was done. The thermodynamic parameters (ΔH0, ΔS0 and ΔG0) of Eu(III) sorption on NRE at different temperatures were calculated from the temperature-dependent sorption isotherms, indicating that the sorption process of Eu(III) was spontaneous. The results showed that the nonlinear method is a better way to obtain the isotherm parameters and the data were in good agreement with the Freundlich isotherm model.
  1. Zhao DL, Chen CL, J. Radioanal. Nucl. Chem., 270, 445 (2006)
  2. Chen L, Yu XJ, Zhao ZD, J. Radioanal. Nucl. Chem., 274, 187 (2007)
  3. Benes P, Stamberg K, Vopalka D, Siroky L, Prochazkova S, J. Radioanal. Nucl. Chem., 256, 465 (2003)
  4. Stamberg K, Benes P, Mizera J, Dolansky J, Vopalka D, Chalupska K, J. Radioanal. Nucl. Chem., 258, 329 (2003)
  5. Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK, Sci. China Chem., 53, 1420 (2010)
  6. Yu XH, Zhu LJ, Guo BW, He SY, Chin. J. Geochem., 28, 220 (2009)
  7. Dong WM, Wang XK, Du JZ, Bian XY, Ma F, Tao ZY, J. Radioanal. Nucl. Chem., 242, 793 (1999)
  8. Tao ZY, Li WJ, Zhang FM, Han J, J. Radioanal. Nucl.Chem., 268, 563 (2006)
  9. Yu S, He ZL, Huang CY, Chen GC, Calvert DV, J. Environ. Qual., 31, 1129 (2002)
  10. Mahatantila K, Seike Y, Okumura M, Int. J. Eng. Sci. Technol., 3, 1655 (2011)
  11. Vadivelan V, Kumar KV, J. Colloid Interface Sci., 286(1), 90 (2005)
  12. Ofomaja AE, Chem. Eng. J., 143(1-3), 85 (2008)
  13. Chowdhury S, Saha P, Bioremediat. J., 196, 14 (2010)
  14. Kumar KV, Sivanesan S, J. Hazard. Mater., 134(1-3), 277 (2006)
  15. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK, Chem. Eng. J., 150(1), 188 (2009)
  16. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK, Chem. Eng. J., 150(1), 188 (2009)
  17. Fan QH, Shao DD, Wu WS, Wang XK, Radiochim. Acta., 96, 159 (2008)
  18. Wang XK, Chen YX, Wu YC, J. Radioanal. Nucl. Chem., 261, 497 (2004)
  19. Fan QH, Zhang ML, Zhang YY, Ding KF, Yang ZQ, Wu WS, Radiochim. Acta., 98, 19 (2010)
  20. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK, Micropor. Mesopor. Mater., 123, 1 (2009)
  21. Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C, Langmuir, 14(7), 1880 (1998)
  22. Yang ST, Li JX, Lu Y, Chen YX, Wang XK, Appl. Radiat.Isot., 67, 1600 (2009)
  23. Misra SCR, Kushwaha P, Das P, Bioremediat. J., 15, 77 (2011)
  24. Belhachemi M, Addoun F, Appl. Water Sci., 1, 111 (2011)
  25. Terzyk AP, Chatlas J, Gauden PA, Rychlicki G, Kowalczyk P, J. Colloid Interface Sci., 266(2), 473 (2003)
  26. Chen L, Gao B, Lu SS, Dong YH, J. Radioanal. Nucl.Chem., 288, 851 (2011)
  27. Donat R, Cilgi GK, Aytas S, Cetisli H, J. Radioanal. Nucl.Chem., 279, 271 (2009)